Search results

1 – 10 of 243
Article
Publication date: 30 July 2024

Bo He, Jian Tan, Guang Yang, Junzhen Yi and Yushi Wang

This paper aims to systematically investigate the effect of laser remelting on the surface morphology and mechanical properties of laser deposition manufactured thin-walled…

Abstract

Purpose

This paper aims to systematically investigate the effect of laser remelting on the surface morphology and mechanical properties of laser deposition manufactured thin-walled Ti-6Al-4V alloy.

Design/methodology/approach

Thin-walled Ti-6Al-4V samples were prepared by laser deposition manufacturing (LDM) method and subsequently surface-treated by laser remelting in a controlled environment. By experiments, the surface qualities and mechanical properties of LDM Ti-6Al-4V alloy before and after laser remelting were investigated.

Findings

After laser remelting, the surface roughness of LDM Ti-6Al-4V alloy decreases from 15.316 to 1.813 µm, hard and brittle martensite presents in the microstructure of the remelted layer, and the microhardness of the laser remelted layer increases by 11.39%. Compared with the machined LDM specimen, the strength of the specimen including the remelted layer improves by about 5%, while the elongation and fatigue life decrease by about 72.17% and 64.60%, respectively.

Originality/value

The results establish foundational data for the application of laser remelting to LDM thin-walled Ti-6Al-4V parts, and may provide an opportunity for laser remelting to process the nonfitting surfaces of LDM parts.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 July 2024

Tianyu Zhang and Lang Yuan

Surface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying…

Abstract

Purpose

Surface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying relationships among processing parameters, top surface roughness and porosity level in additively manufactured 316L stainless steel.

Design/methodology/approach

A systematic variation of printing process parameters was conducted to print cubic samples based on laser power, speed and their combinations of energy density. Melt pool morphologies and dimensions, surface roughness quantified by arithmetic mean height (Sa) and porosity levels were characterized via optical confocal microscopy.

Findings

The study reveals that the laser power required to achieve optimal top surface quality increases with the volumetric energy density (VED) levels. A smooth top surface (Sa < 15 µm) or a rough surface with humps at high VEDs (VED > 133.3 J/mm3) can serve as indicators for fully dense bulk samples, while rough top surfaces resulting from melt pool discontinuity correlate with high porosity levels. Under insufficient VED, melt pool discontinuity dominates the top surface. At high VEDs, surface quality improves with increased power as mitigation of melt pool discontinuity, followed by the deterioration with hump formation.

Originality/value

This study reveals and summarizes the formation mechanism of dominant features on top surface features and offers a potential method to predict the porosity by observing the top surface features with consideration of processing conditions.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 May 2024

Min Li, Hangxuan Liu, Xingquan Zhang, Hengji Yang, Lisheng Zuo, Ziyu Wang, Shiwei Duan and Song Shu

The purpose of this paper is to investigate the effect of laser peening (LP) on mechanical and wear properties of 304 stainless steel sheet.

103

Abstract

Purpose

The purpose of this paper is to investigate the effect of laser peening (LP) on mechanical and wear properties of 304 stainless steel sheet.

Design/methodology/approach

Three-dimensional morphology, micro-hardness and micro-structure of shocked samples were tested. The wear amount, wear track morphology and wear mechanism were also characterized under dry sliding wear using Al2O3 ceramics ball.

Findings

The LP treatment generates deformation twins that contribute to the grain refinement and hardness increase. The wear test displays that the wear mechanism of samples is mainly abrasive wear and oxidation wear at 10 N load. While at 30 N, the delamination and adhesion areas of treated sample are reduced visibly compared to untreated ones.

Originality/value

This study specifically investigates the mechanical and wear properties of 304 stainless steel after the direct action of LP on its surface, which shows an effective improvement on the wear resistance. For example, the wear loss of processed sample is reduced by 19% at 30 N, the friction coefficient decreases from 0.4714 to 0.4308 and the groove depth is reduced from 78.1 to 74.4 µm under same condition.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0007/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 May 2024

Shan Gao, Bin Wang, Xinjie Yao and Quan Yuan

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Abstract

Purpose

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Design/methodology/approach

Alloy 800 and 690 were immersed in chloride and thiosulfate-containing solution at 300°C up to five days, and then the surface film was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometers (EDX).

Findings

Through static immersion experiments in a high-temperature and high-pressure water environment, the alloy samples covered by surface film after five days of immersion were obtained. The morphology of the surface film was characterized at both horizontal and cross-sectional scales using SEM and focused ion beam-TEM techniques. It was observed that due to the influence of the quartz lining, the surface film primarily exhibited a bilayered structure. The first layer contained a significant amount of SiO2, with a higher content of metal hydroxides compared to metal oxides. The second layer was predominantly composed of Fe, Ni and Cr, with a higher content of metal oxides compared to metal hydroxides.

Originality/value

The results showed that the materials of the lining of the autoclave could significantly influence the film composition of the tested material, which should be paid attention when analyzing the corrosion mechanism at high temperature.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 May 2024

Xiaohu Wen, Xiangkang Cao, Xiao-ze Ma, Zefan Zhang and Zehua Dong

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Abstract

Purpose

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Design/methodology/approach

A kind of micro-nano hydrophobic ternary microparticles was fabricated from SiO2/halloysite nanotubes (HNTs) and recycled concrete powders (RCPs), which was then mixed with sodium silicate and silane to form an inorganic slurry. The slurry was further sprayed on the concrete surface to construct a superhydrophobic coating (SHC). Transmission electron microscopy and energy-dispersive X-ray spectroscopy mappings demonstrate that the nano-sized SiO2 has been grafted on the sub-micron HNTs and then further adhered to the surface of micro-sized RCP, forming a kind of superhydrophobic particles (SiO2/HNTs@RCP) featured of abundant micro-nano hierarchical structures.

Findings

The SHC surface presents excellent superhydrophobicity with the water contact angle >156°. Electrochemical tests indicate that the corrosion rate of mild steel rebar in coated concrete reduces three-order magnitudes relative to the uncoated one in 3.5% NaCl solution. Water uptake and chloride ion (Cl-) diffusion tests show that the SHC exhibits high H2O and Cl- ions barrier properties thanks to the pore-sealing and water-repellence properties of SiO2/HNTs@RCP particles. Furthermore, the SHC possesses considerable mechanical durability and outstanding self-cleaning ability.

Originality/value

SHC inhibits water uptake, Cl- diffusion and rebar corrosion of concrete, which will promote the sustainable application of concrete waste in anti-corrosive concrete projects.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

68

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 May 2024

Chong Zhang, Jiayi Xiang and Qifan Wen

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly…

34

Abstract

Purpose

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly corrosion-resistant coatings is needed to extend the service life of the columns.

Design/methodology/approach

This study aims to compare the corrosion resistance of ST-Cr3C2-NiCr (sealed treatment Cr3C2-NiCr) coatings with industrially applied chromium plating. The corrosion failure mechanism of the coatings was investigated.

Findings

The results demonstrated that the ST-Cr3C2-NiCr coatings exhibited excellent corrosion resistance. After sealing treatment, the corrosion potential of Cr3C2-NiCr coatings was −0.215 V, and the corrosion current density of Cr3C2-NiCr coatings was lower than that of the plated parts.

Practical implications

ST-Cr3C2-NiCr coatings prepared by supersonic atmospheric plasma spraying could provide excellent corrosion resistance in the coal industry.

Originality/value

The low porosity and the presence of the NiCr phase were crucial factors contributing to the preferable corrosion resistance exhibited by the ST-Cr3C2-NiCr coatings. The corrosive process of the coatings involved layer-by-layer delamination of surface oxide film, sub-surface pitting, formation and degradation of sub-surface passive film, as well as severe block-like delamination.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 July 2024

Muhammad Ibnu Rashyid, Mahendra Jaya and Muhammad Akhsin Muflikhun

This paper aims to use hybrid manufacturing (HM) to overcome several drawbacks of material extrusion three-dimensional (3D) printers, such as low dimension ranging from 0.2 to…

Abstract

Purpose

This paper aims to use hybrid manufacturing (HM) to overcome several drawbacks of material extrusion three-dimensional (3D) printers, such as low dimension ranging from 0.2 to 0.5 µm, resulting in a noticeable staircase effect and elevated surface roughness.

Design/methodology/approach

Subtractive manufacturing (SM) through computer numerical control milling is renowned for its precision and superior surface finish. This study integrates additive manufacturing (AM) and SM into a single material extrusion 3D printer platform, creating a HM system. Two sets of specimens, one exclusively printed and the other subjected to both printing and milling, were assessed for dimension accuracy and surface roughness.

Findings

The outcomes were promising, with postmilling accuracy reaching 99.94%. Significant reductions in surface roughness were observed at 90° (93.4% decrease from 15.598 to 1.030 µm), 45° (89% decrease from 26.727 to 2.946 µm) and the face plane (71% decrease from 12.176 to 3.535 µm).

Practical implications

The 3D printer was custom-built based on material extrusion and modified with an additional milling tool on the same gantry. An economic evaluation based on cost-manufacturing demonstrated that constructing this dual-function 3D printer costs less than US$560 in materials, offering valuable insights for researchers looking to replicate a similar machine.

Originality/value

The modified general 3D printer platform offered an easy way to postprocessing without removing the workpiece from the bed. This mechanism can reduce the downtime of changing the machine. The proven increased dimension accuracy and reduced surface roughness value increase the value of 3D-printed specimens.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 July 2024

Long Sun, Chengjie Jin, Xiaodong Tang, Kexin Cao, Songquan Wang and Ningning Hu

The purpose of this paper is to solve the abrupt deterioration of lubricant performance in high-temperature conditions.

Abstract

Purpose

The purpose of this paper is to solve the abrupt deterioration of lubricant performance in high-temperature conditions.

Design/methodology/approach

Three silver pyrazolyl methyl pyridine complexes with different morphologies were synthesized. A four-ball tribometer was used to assess the tribological characteristics as an additive for pentaerythritol oleate both independently and compound with 1-hexyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide.

Findings

The results showed that when silver complexes and ionic liquids (IL) act independently, sheet silver complex 1 and rod silver complex 2 exhibit good lubricating performance; the optimal antifriction concentration of the ILs is 0.25 Wt.%. The tribological results of the compounds additive of ILs and silver complexes indicate that the wear scar diameter of compound 1 decreased by 16.914%, the wear volume reduced by 7.44% and the lubrication effect surpassed that of the two substances individually; rod compound 2 exhibited an antagonistic effect, intensifying wear; compound 3’s lubrication effect fell between that of the two individual components.

Originality/value

The compound of sheet silver complexes and ILs effectively solves the agglomeration problem of micro/nano lubricant additives. When the interface fails, self-repair is completed, improving the stability and antiwear performance of the lubricating oil.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0128

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 July 2024

Cho-Pei Jiang, Masrurotin Masrurotin, Maziar Ramezani, Alvian Toto Wibisono, Ehsan Toyserkani and Wojciech Macek

Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials…

Abstract

Purpose

Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials, this capability bridges the need for metallic components in complex manufacturing processes. The research is to explore the manufacturability of multi-metal parts by printing green bodies of PLA/multi-metal objects, carrying these objects to the debinding process and varying the sintering parameters.

Design/methodology/approach

Three different sample types of SS316L part, Inconel 718 part and bimetallic composite of SS316L/IN718 were effectively printed. After the debinding process, the printed parts (green bodies), were isothermally sintered in non-vacuum chamber to investigate the fusion behavior at four different temperatures in the range of 1270 °C−1530 °C for 12 h and slowly cooled in the furnace. All samples was assessed including geometrical assessment to measure the shrinkage, characterization (XRD) to identify the crystallinity of the compound and microstructural evolution (Optical microscopy and SEM) to explore the porosity and morphology on the surface. The hardness of each sample types was measured and compared. The sintering parameter was optimized according to the microstructural evaluation on the interface of SS316L/IN718 composite.

Findings

The investigation indicated that the de-binding of all the samples was effectively succeeded through less weight until 16% when the PLA of green bodies was successfully evaporated. The morphology result shows evidence of an effective sintering process to have the grain boundaries in all samples, while multi-metal parts clearly displayed the interface. Furthermore, the result of XRD shows the tendency of lower crystallinity in SS316L parts, whilst IN718 has a high crystallinity. The optimal sintering temperature for SS316L/IN718 parts is 1500 °C. The hardness test concludes that the higher sintering temperature gives a higher hardness result.

Originality/value

This study highlights the successful sintering of a bimetallic stainless steel 316 L/Inconel 718 composite, fabricated via dual-nozzle fused deposition modeling, in a non-vacuum environment at 1500 °C. The resulting material displayed maximum hardness values of 872 HV for SS316L and 755.5 HV for IN718, with both materials exhibiting excellent fusion without any cracks.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 243