Search results

1 – 10 of 174
Open Access
Article
Publication date: 5 November 2021

Darko Lovrec and Vito Tič

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding…

2909

Abstract

Purpose

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding the electrical properties of the fluid used. The latter is closely related to the purpose, type, structure, and conditions of use of a hydraulic system, especially the powertrain design and fluid condition monitoring. The insulating capacity of the hydraulic fluid is important in cases where the electric motor of the pump is immersed in the fluid. In other cases, on the basis of changing the electrical conductive properties of the hydraulic fluid, we can refer its condition, and, on this basis, the degree of degradation.

Design/methodology/approach

The paper first highlights the importance of knowing the electrical properties of hydraulic fluids and then aims to compare these properties, such as the breakdown voltage of commonly used hydraulic mineral oils and newer ionic fluids suitable for use as hydraulic fluids.

Findings

Knowledge of this property is crucial for the design approach of modern hydraulic compact power packs. In the following, the emphasis is on the more advanced use of known electrical quantities, such as electrical conductivity and the dielectric constant of a liquid.

Originality/value

Based on the changes in these quantities, we have the possibility of real-time monitoring the hydraulic fluid condition, on the basis of which we judge the degree of fluid degradation and its suitability for further use.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1425

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive…

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 28 April 2022

Krzysztof Jakub Stojek, Jan Felba, Damian Nowak, Karol Malecha, Szymon Kaczmarek and Patryk Tomasz Tomasz Andrzejak

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is…

Abstract

Purpose

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is important to achieve information about how materials and process parameters influence them.

Design/methodology/approach

Thermal investigation of the thermal joints analysis method was focused on determination of thermal resistance, where temperature measurements were performed using infrared camera. They were performed in two modes: steady-state analysis and dynamic analysis. Mechanical analysis based on measurements of mechanical shear force. Additional characterizations based on X-ray image analysis (image thresholding), optical microscope of polished cross-section and scanning electron microscope image analysis were proposed.

Findings

Sample surface modification affects thermal resistance. Silver metallization exhibits the lowest thermal resistance and the highest mechanical strength compared to the pure Si surface. The type of dynamic analysis affects the results of the thermal resistance.

Originality/value

Investigation of the layer quality influence on mechanical and thermal performance provided information about different joint types.

Details

Soldering & Surface Mount Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
126

Abstract

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Open Access
Article
Publication date: 5 June 2020

Krzysztof Jakub Stojek, Jan Felba, Johann Nicolics and Dominik Wołczyński

This paper aims to develop thermal analysis method of thermal joints characterization. The impact on convection on thermal resistance analysis with use thermography for…

Abstract

Purpose

This paper aims to develop thermal analysis method of thermal joints characterization. The impact on convection on thermal resistance analysis with use thermography for silver-based thermal joints were investigated for non-metallized and metalized semiconductor surfaces. Heat transfer efficiency depends on thermal conductivity; radiation was used to perform thermographic analysis; the convection is energy loss, so its removing might improve measurements accuracy.

Design/methodology/approach

Investigation of thermal joints analysis method was focused on determination of convection impact on thermal resistance thermographic analysis method. Measuring samples placed in vacuum chamber with lowered pressure requires transparent window for infrared radiation that is used for thermographic analysis. Impact of infrared window and convection on temperature measurements and thermal resistance were referred.

Findings

The results showed that the silicon window allowed to perform thermal analysis through, and the convection was heat transfer mode which create 15% energy loss.

Originality/value

It is possible to measure thermal resistance for silver-based thermal joints with convection eliminated to improve measurements accuracy.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 March 2023

Abdelmoumene Djabi

The paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described…

Abstract

Purpose

The paper presents a mathematical problem involving quasistatic contact between a thermo-electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress. The author establishes the existence of a unique weak solution to the problem by utilizing classical results for evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.

Design/methodology/approach

The author establishes a variational formulation for the model and proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Findings

The author proves the existence of a unique weak solution to the problem using classical results for evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Originality/value

The author studies a mathematical problem between a thermo-electro-viscoelastic body and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response conditions and the heat exchange with a conductive foundation, which is original and requires a good understanding of modeling and mathematical tools.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Content available
Article
Publication date: 26 April 2013

246

Abstract

Details

Microelectronics International, vol. 30 no. 2
Type: Research Article
ISSN: 1356-5362

1 – 10 of 174