Search results

1 – 10 of over 15000
Article
Publication date: 28 June 2024

Mohamed Hamed Zakaria and Ali Basha

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions…

Abstract

Purpose

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions, construction considerations, structural integrity, uncertainties in design parameters and construction and monitoring costs. Accordingly, this paper is to provide a detailed literature review on the design criteria of CPWs, specifically in cohesionless soil. This study aims to present a comprehensive overview of the current state of knowledge in this area.

Design/methodology/approach

The paper uses a literature review approach to gather information on the design criteria of CPWs in cohesionless soil. It covers various aspects such as excavation support systems (ESSs), deformation behavior, design criteria, lateral earth pressure calculation theories, load distribution methods and conventional design approaches.

Findings

The review identifies and discusses common challenges associated with the design of CPWs in cohesionless soil. It highlights the uncertainties in determining load distribution and the potential for excessive wall deformations. The paper presents various approaches and methodologies proposed by researchers to address these challenges.

Originality/value

The paper contributes to the field of geotechnical engineering by providing a valuable resource for geotechnical engineers and researchers involved in the design and analysis of CPWs in cohesionless soil. It offers insights into the design criteria, challenges and potential solutions specific to CPWs in cohesionless soil, filling a gap in the existing knowledge base. The paper draws attention to the limitations of existing analytical methods that neglect the serviceability limit state and assume rigid plastic soil behavior, highlighting the need for improved design approaches in this context.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 May 2024

Mahesh Gupta, Harshal Lowalekar, Chandrashekhar V. Chaudhari and Johan Groop

Design Science (DS) is a relatively new paradigm for addressing complex real-world problems through the design and evaluation of artifacts. Its constituent methodologies are…

Abstract

Purpose

Design Science (DS) is a relatively new paradigm for addressing complex real-world problems through the design and evaluation of artifacts. Its constituent methodologies are currently being discussed and established in numerous related research fields, such as information systems and management (Hevner et al., 2004). However, a DS methodology that describes the “how to” is largely lacking, not only in the field of OM but in general. The Theory of Constraints (TOC) and its underlying thinking processes (TP) have produced several novel artifacts for addressing ill-structured real-world operations problems (Dettmer, 1997; Goldratt, 1994), but they have not been analyzed from a DS research standpoint. The purpose of this research is to demonstrate how TOC’s thinking process methodology can be used for conducting exploratory DS research in Operations and Supply Chain Management (OSCM).

Design/methodology/approach

A case study of spare parts replenishment illustrates the use of TOC’s thinking processes in DS to structure an initially unstructured problem context and to facilitate the design of a novel solution.

Findings

TOC’s thinking processes are an effective methodology for problem-solving DS research, enabling the development of novel solutions in initially unstructured and wicked problem situations. Combined with structured CIMO design logic TOC’s thinking process offers a systematic method for exploring wicked problems, designing novel solutions, and demonstrating theoretical contributions.

Research limitations/implications

The implication for research is that TOC’s thinking process methodology can provide important elements of the lacking “how to” methodology for DS research, not only for the field of OM but in general for the field of management.

Practical implications

The practical outcome of the research is a novel design for dynamic buffer-based replenishment that extends beyond organizational boundaries.

Originality/value

This work shows how the thinking processes can be used in DS research to develop rigorous design propositions for ill-structured problems.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 21 May 2024

Xiangyun Li, Liuxian Zhu, Shuaitao Fan, Yingying Wei, Daijian Wu and Shan Gong

While performance demands in the natural world are varied, graded lattice structures reveal distinctive mechanical properties with tremendous engineering application potential…

Abstract

Purpose

While performance demands in the natural world are varied, graded lattice structures reveal distinctive mechanical properties with tremendous engineering application potential. For biomechanical functions where mechanical qualities are required from supporting under external loading and permeability is crucial which affects bone tissue engineering, the geometric design in lattice structure for bone scaffolds in loading-bearing applications is necessary. However, when tweaking structural traits, these two factors frequently clash. For graded lattice structures, this study aims to develop a design-optimization strategy to attain improved attributes across different domains.

Design/methodology/approach

To handle diverse stress states, parametric modeling is used to produce strut-based lattice structures with spatially varied densities. The tailored initial gradients in lattice structure are subject to automatic property evaluation procedure that hinges on finite element method and computational fluid dynamics simulations. The geometric parameters of lattice structures with numerous objectives are then optimized using an iterative optimization process based on a non-dominated genetic algorithm.

Findings

The initial stress-based design of graded lattice structure with spatially variable densities is generated based on the stress conditions. The results from subsequent dual-objective optimization show a series of topologies with gradually improved trade-offs between mechanical properties and permeability.

Originality/value

In this study, a novel structural design-optimization methodology is proposed for mathematically optimizing strut-based graded lattice structures to achieve enhanced performance in multiple domains.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 21 December 2023

Xinran Zhao, Yingying Pang, Gang Wang, Chenhui Xia, Yuan Yuan and Chengqian Wang

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Abstract

Purpose

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Design/methodology/approach

An advanced packaging method, 12-inch wafer-level through-mold-via (TMV) additive manufacturing, is used to fabricate a 3D resin-based coaxial transition with a continuous ground wall (named resin-coaxial transition). Designation and simulation are implemented to ensure the application universality and fabrication feasibility. The outer radius R of coaxial transition is optimized by designing and fabricating three samples.

Findings

The fabricated coaxial transition possesses an inner radius of 40 µm and a length of 200 µm. The optimized sample with an outer radius R of 155 µm exhibits S11 < –10 dB and S21 > –1.3 dB at 10–110 GHz and the smallest insertion loss (S21 = 0.83 dB at 77 GHz) among the samples. Moreover, the S21 of the samples increases at 58.4–90.1 GHz, indicating a broad and suitable working bandwidth.

Originality/value

The wafer-level TMV additive manufacturing method is applied to fabricate coaxial transitions for the first time. The fabricated resin-coaxial transitions show good performance up to the W-band. It may provide new strategies for novel designing and fabricating methods of RF transitions.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 June 2024

Junhui Zhang, Sai Zhang, Yuhua Yang and Wendong Zhang

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy…

Abstract

Purpose

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy integration. This study aims to provide direction for the advancement of MEMS acoustic emission sensors and predict their future potential for structural health detection of microprecision instruments.

Design/methodology/approach

This paper summarizes the recent research progress of three MEMS acoustic emission sensors, compares their individual strengths and weaknesses, analyzes their research focus and predicts their development trend in the future.

Findings

Piezoresistive, piezoelectric and capacitive MEMS acoustic emission sensors are the three main streams of MEMS acoustic emission sensors, which have their own advantages and disadvantages. The existing research has not been applied in practice, and MEMS acoustic emission sensor still needs further research in the aspects of wide frequency/high sensitivity, good robustness and integration with complementary metal oxide semiconductor. MEMS acoustic emission sensor has great development potential.

Originality/value

In this paper, the existing research achievements of MEMS acoustic emission sensors are described systematically, and the further development direction of MEMS acoustic emission sensors in the future research field is pointed out. It provides an important reference value for the actual weak acoustic emission signal detection in narrow structures.

Details

Sensor Review, vol. 44 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 November 2023

Hayford Pittri, Kofi Agyekum, Edward Ayebeng Botchway, João Alencastro, Olugbenga Timo Oladinrin and Annabel Morkporkpor Ami Dompey

The design for deconstruction (DfD) technique, a contemporaneous solution to demolition by optimizing disassembly activities to enable reuse, has recently emerged with several…

Abstract

Purpose

The design for deconstruction (DfD) technique, a contemporaneous solution to demolition by optimizing disassembly activities to enable reuse, has recently emerged with several promises to promote the circular economy. However, little attention has been given to its implementation among design professionals, especially in the Global South. Therefore, this study aims to explore the drivers for DfD implementation among design professionals in the Ghanaian construction industry (GCI).

Design/methodology/approach

The study adopted a mixed research approach (explanatory sequential design) with an initial quantitative instrument phase, followed by a qualitative data collection phase. Data from the survey were analyzed using mean, standard deviation, one-sample t-Test, and normalization value (NV) test after a review of pertinent literature. These data were then validated through semistructured interviews with ten design professionals with in-depth knowledge of DfD.

Findings

The findings revealed that although all ten drivers are important, the eight key drivers for the DfD implementation were identified as, in order of importance, “Availability of computer software applications regarding DfD,” “Inclusion of DfD in the formal education of design professionals,” “Increasing public awareness of the concept of DfD,” “Organizing workshops/seminars for design professionals on the concept of DfD,” “Availability of DfD training,” “Regulation regarding DfD,” “Industry guidance regarding DfD” and “Establishing a market for salvaged construction components.”

Originality/value

This study's findings provide insights into an under-investigated topic in Ghana and offer new and additional information and insights into the current state-of-the-art on the factors that drive DfD implementation.

Details

Smart and Sustainable Built Environment, vol. 13 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 15000