Search results

1 – 10 of 16
Article
Publication date: 12 October 2018

Timo Rogge, Ricarda Berger, Linus Pohle, Raimund Rolfes and Jörg Wallaschek

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine…

Abstract

Purpose

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine blades concentrate on the analysis and evaluation of starting dynamics and fatigue strength. Besides, the influence of structural mistuning on the vibration characteristics of the single blade is analyzed and discussed.

Design/methodology/approach

A basic computation cycle is generated from a flight profile to describe the operating history of the gas turbine blade properly. Within an approximation approach for high-frequency vibrations, maximum vibration amplitudes are computed by superposition of stationary frequency responses by means of weighting functions. In addition, a two-way coupling approach determines the influence of structural mistuning on the vibration of a single blade. Fatigue strength of gas turbine blades is analyzed with a semi-analytical approach. The progressive damage analysis is based on MINER’s damage accumulation assuming a quasi-stable behavior of the structure.

Findings

The application to a gas turbine blade shows the computational capabilities of the approach presented. Structural characteristics are obtained by robust and stable computations using a detailed finite element model considering different load conditions. A high quality of results is realized while reducing the numerical costs significantly.

Research limitations/implications

The method used for analyzing the starting dynamics is based on the assumption of a quasi-static state. For structures with a sufficiently high stiffness, such as the gas turbine blades in the present work, this procedure is justified. The fatigue damage approach relies on the existence of a quasi-stable cyclic stress condition, which in general occurs for isotropic materials, as is the case for gas turbine blades.

Practical implications

Owing to the use of efficient analysis methods, a fast evaluation of the gas turbine blade within a stochastic analysis is feasible.

Originality/value

The fast numerical methods and the use of the full finite element model enable performing a structural analysis of any blade structure with a high quality of results.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 1999

Marc P. Mignolet, Alejandro Rivas‐Guerra and Brandon LaBorde

The objective of the present article is to provide a progress report on, and highlight, some ongoing efforts regarding the available techniques for the direct (i.e. not based on…

Abstract

The objective of the present article is to provide a progress report on, and highlight, some ongoing efforts regarding the available techniques for the direct (i.e. not based on Monte Carlo simulations) prediction of the distribution of the forced response of turbomachinery bladed disks that exhibit small blade‐to‐blade variations in their structural properties (random mistuning). The focus of this effort is on the statistical distributions of the amplitudes of response of a typical blade at a given frequency (level 1), of the maximum responding blade on the disk at a given frequency (level 2), and finally of the maximum responding blade on the disk over a frequency sweep (level 3). When appropriate, emphasis will be placed on the reliability of these techniques as a function of the blade‐to‐blade coupling strength.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 22 May 2020

Wei Sun, Shuai Yang, Junnan Gao and Xianfei Yan

It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic…

96

Abstract

Purpose

It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic symmetry algorithm which can determine the mode of blisk in the sector coordinate system directly.

Design/methodology/approach

Using the exponential and real quasi-equivalent Fourier matrices, the formulas for solving the sector mode were derived, and the relationship between the two kinds of sector modes was also discussed. Based on the proposed cyclic symmetry algorithm, the vibration characteristics of an academic blisk were solved, and the formulas for solving the natural characteristics and vibration responses of the coated blisk were given.

Findings

A blisk with NiCrAlCoY+YSZ hard coating on both sides of each blade was chosen as a case to demonstrate the presented method. Based on the verification analysis model, the influences of coating thickness on the vibration reduction effect of the blisk were discussed. The results show that the hard coating has good vibration reduction effect on the blisk even the coating thickness is very thin and the vibration reduction effect of hard coating in the high frequency range is obviously better than that in the low frequency range.

Originality/value

As a large number of reduced order modeling methods of blisk are implemented based on the sector modes, the proposed method which can obtain the sector modes directly will significantly improve the efficiency of dynamic modeling and analysis of the coated blisk structure.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2006

B.O. Al‐Bedoor, S. Aedwesi and Y. Al‐Nassar

The purpose of this paper is to validate mathematically the feasibility of extracting the rotating blades vibration condition from the shaft torsional vibration measurement.

1425

Abstract

Purpose

The purpose of this paper is to validate mathematically the feasibility of extracting the rotating blades vibration condition from the shaft torsional vibration measurement.

Design/methodology/approach

A mathematical model is developed and simulated for extracting rotating blades vibration signatures from the shaft torsional vibration signals. The model simulates n‐blades attached to a rigid disk at setting angles and the shaft drives the disk is flexible in torsion. The model is developed using the multi‐body dynamics approach in conjunction with the Lagrangian dynamics. A three‐blade rotor system example is simulated for blades free and forced vibration under stationary and rotating conditions. Frequency spectrums for the shaft torsional and blades bending vibration are represented and studied for analysis verification purposes.

Findings

The torsional vibration frequency spectrums showed blades free and forced vibration signatures. The blade setting angle is shown to reduce the sensitivity of torsional vibration signal to blades vibration signatures as it increases. The torsional vibration signals captured the variation in blades properties and produced broadband frequency components for mistuned system. The shaft torsional rigidity is shown to reduce the sensitivity of torsional vibration signal to blades vibration if increased to extremely high values (approaching rigid shaft). The rotor inertia is shown to have less effect on the torsional vibration signals sensitivity. The method of torsional vibration as a tool for rotating blades vibration measurement, based on the proposed mathematical model and its simulation, is feasible.

Practical implications

There is a growing need for reliable predictive maintenance programs that in turn requires continuous development in methods for machinery health monitoring through vibration data collection and analysis. Turbo machinery and bladed assemblies like fans, marine propellers and wind turbine systems usually suffer from the problem of blades high vibration that is difficult to measure. The proposed new method for blades vibration measurement depends on the shaft torsional vibration signals and can be used also for verifying the signals from other types of bearings sensors for possible blades vibration condition monitoring.

Originality/value

This paper presents a unique mathematical model and simulation results for the rotating blades vibration monitoring. The developed model can be simulated for studying coupled blades vibration problems in the design stage as well as for condition monitoring in maintenance applications.

Details

Journal of Quality in Maintenance Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 11 January 2013

Mary Ann McGrath, John F. Sherry and Nina Diamond

The aim of this paper is to expand the scant literature related to retail branding ideology and the application of mythotypes to flagship stores within the Chinese setting. The…

2341

Abstract

Purpose

The aim of this paper is to expand the scant literature related to retail branding ideology and the application of mythotypes to flagship stores within the Chinese setting. The study explores the transplantation of a retail brand ideology in the form of complex home‐country cultural content to a host culture whose local retail narratives differ significantly from those of the brand enterprise.

Design/methodology/approach

This is an ethnographic study that spans the two years of the focal store's existence. With the help of native‐speaking graduate assistants, store visits, interviews with Chinese locals and internet mentions and secondary information were collected. Data include fieldnotes, interview transcripts, photographs, news articles, blog comments and website information.

Findings

The paper details the mythotypic mistuning of marketscape and mindscape that contributed to the failure of this flagship store and build theory concerning the implementation of retail brand ideology and retail theatrics. The paper concludes that successful themed flagship brand stores encapsulate ideology in stories composed of mythotypes and encourages the enactment of that ideology through multiple, interrelated brand experiences. Misalignments of these mythotypes can impede the acceptance of retail brand ideology and the diffusion of the retail theatre concept.

Originality/value

While foreign and domestic flagship brand stores have flourished in China, cultural propriety of these stores includes a host of physical design cues that must mesh with the local culture's sensibilities and the brand's provenance. To translate the retail brand ideology into customer‐centric meaning is challenging. The presence or absence of mythotypes comprising the servicescape profoundly affect their success.

Details

Qualitative Market Research: An International Journal, vol. 16 no. 1
Type: Research Article
ISSN: 1352-2752

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3544

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2016

Ilker Murat Koc, Semuel Franko and Can Ozsoy

The purpose of this paper is to investigate the stability of a small scale six-degree-of-freedom nonlinear helicopter model at translator velocities and angular displacements…

Abstract

Purpose

The purpose of this paper is to investigate the stability of a small scale six-degree-of-freedom nonlinear helicopter model at translator velocities and angular displacements while it is transiting to hover with different initial conditions.

Design/methodology/approach

In this study, model predictive controller and linear quadratic regulator are designed and compared within each other for the stabilization of the open loop unstable nonlinear helicopter model.

Findings

This study shows that the helicopter is able to reach to the desired target with good robustness, low control effort and small steady-state error under disturbances such as parameter uncertainties, mistuned controller.

Originality/value

The purpose of using model predictive control for three axes of the autopilot is to decrease the control effort and to make the close-loop system insensitive against modeling uncertainties.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6048

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2021

Stanisław Noga, Kaja Maciejowska and Tomasz Rogalski

This paper aims to deal with the problem of vibration in an aircraft engine turbine shaft shield. The physical model of the system under study is inspired by the PZL-10W aviation…

Abstract

Purpose

This paper aims to deal with the problem of vibration in an aircraft engine turbine shaft shield. The physical model of the system under study is inspired by the PZL-10W aviation jet engine shaft shield and is a structure of the profile circular arc. The main goal of the presented research is to develop a modal model of the discussed object. Another task is to determine the impact of the shaft shield damage on the change of dynamic parameters (the values of the natural frequencies and changing of the shape of the corresponding natural forms) of the discussed object. Finally, the task is connected with the calculation of the excitation speeds of the discussed shaft shield’s respective natural frequencies.

Design/methodology/approach

To realize the main goal finite element method simulation and experimental investigation were conducted. The quality of the achieved models is determined based on the relative error of natural frequencies and the similarity to normal modes established on the basis of the modal assurance criterion (MAC) indicator. The Campbell diagram was used to calculate the excitation speeds of the discussed shaft shield’s respective natural frequencies.

Findings

The obtained results indicate the changes in the dynamic properties of the shaft shield as a result of its cracking. On the basis of the adopted measurement (MAC indicator), the level of similarity was established between the numerical simulation results and the measurement results for the undamaged shield. Verification of the different mode shapes using the CrossMAC tool is an effective method, which allows comparing of the shape of the natural form and may be helpful in the process of adjusting modal models to the results of experimental tests.

Practical implications

It is important to note that as a result of using commercial software (ANSYS program) and a commercial measuring system (Bruel and Kjaer), the presented analysis can be attractive for design engineers dealing with the dynamics of aviation systems.

Originality/value

The paper presents the authors’ original approach to the dynamic analysis of the aviation engine turbine shaft shield, which can be useful for engineers dealing with the issue of vibration in shaft shield systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 February 2004

1421

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 16