Search results

1 – 10 of over 1000
Article
Publication date: 25 January 2011

Józef Błachnio

The purpose of this paper is to present results of laboratory testing work on causes of a service failure/damage to an aircraft turbojet's gasturbine blade made of the EI 867‐WD…

Abstract

Purpose

The purpose of this paper is to present results of laboratory testing work on causes of a service failure/damage to an aircraft turbojet's gasturbine blade made of the EI 867‐WD alloy.

Design/methodology/approach

The tests comprised comparing the microstructure of a service‐damaged blade with microstructures of specimens drawn from a similar all‐new blade, both subjected to temperatures of different values for different annealing times.

Findings

Findings based on the comparison of experimentally gained results of microstructure examination of both the gasturbine blades were: the change in the microstructure of a damaged blade results from the growth and cuboidal‐to‐lamellar change of shape of the reinforcing phase γ′ (Ni3Al); and the size and shape of this phase are comparable to those of the phase γ′ of a new blade subjected to annealing at temperature exceeding 1,223 K for 1 h. The results gained allowed for drawing the conclusion that the damaged turbine blade was operated in the exhaust‐gas temperature exceeding the maximum permissible value of 1,013 K for approximately 1 h in the course of an air mission.

Research limitations/implications

The comparison‐oriented experimental testing work was carried out on a new blade manufactured in the way and from material identical to those of the damaged blade. The applied methodology enables us to gain qualitative results of investigating into the causes of a failure/damage to a gasturbine blade.

Practical implications

The presented methodology of identifying (origin‐finding of) a service‐induced damage to a gasturbine blade proves helpful in the case of an engine failure, when information on the operating conditions thereof is insufficient.

Originality/value

The paper is an original work by the authors. To the best of their knowledge, the issue has not been found in the literature, approached in this particular way. It has been based on research work on air accidents due to the service‐induced failures/damages to gasturbine blades in aircraft turbojet engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 12 October 2018

Timo Rogge, Ricarda Berger, Linus Pohle, Raimund Rolfes and Jörg Wallaschek

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine

Abstract

Purpose

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine blades concentrate on the analysis and evaluation of starting dynamics and fatigue strength. Besides, the influence of structural mistuning on the vibration characteristics of the single blade is analyzed and discussed.

Design/methodology/approach

A basic computation cycle is generated from a flight profile to describe the operating history of the gas turbine blade properly. Within an approximation approach for high-frequency vibrations, maximum vibration amplitudes are computed by superposition of stationary frequency responses by means of weighting functions. In addition, a two-way coupling approach determines the influence of structural mistuning on the vibration of a single blade. Fatigue strength of gas turbine blades is analyzed with a semi-analytical approach. The progressive damage analysis is based on MINER’s damage accumulation assuming a quasi-stable behavior of the structure.

Findings

The application to a gas turbine blade shows the computational capabilities of the approach presented. Structural characteristics are obtained by robust and stable computations using a detailed finite element model considering different load conditions. A high quality of results is realized while reducing the numerical costs significantly.

Research limitations/implications

The method used for analyzing the starting dynamics is based on the assumption of a quasi-static state. For structures with a sufficiently high stiffness, such as the gas turbine blades in the present work, this procedure is justified. The fatigue damage approach relies on the existence of a quasi-stable cyclic stress condition, which in general occurs for isotropic materials, as is the case for gas turbine blades.

Practical implications

Owing to the use of efficient analysis methods, a fast evaluation of the gas turbine blade within a stochastic analysis is feasible.

Originality/value

The fast numerical methods and the use of the full finite element model enable performing a structural analysis of any blade structure with a high quality of results.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 1969

J.F. Barnes

ALTHOUGH numerous papers and lectures presented to the Royal Aeronautical Society have mentioned the upward trend in turbine inlet gas temperatures, there has been no review of…

Abstract

ALTHOUGH numerous papers and lectures presented to the Royal Aeronautical Society have mentioned the upward trend in turbine inlet gas temperatures, there has been no review of the status of blade cooling technology since 1956, when Ainley's classic paper ‘The High Temperature Turbo‐jet’ was published. Accordingly it is the aim of this paper to present such a review. Before doing so it is worth while to compare the engine situation today with what it was in 1956. At that time, much of the available experience in the U.K. on air cooled turbines was based on experimental units, designed for the express purpose of measuring blade temperatures under controlled conditions of cooling airflow and high gas temperature. These research turbines had also yielded some useful preliminary data on the aerodynamic effects of cooling air discharge and on thermal stress and creep problems. Some engine experience had been attained, mainly (in the U.K.) with engines such as the Avon, Conway and Tyne. Whereas many of the research turbine and cascade blades had fairly complex patterns of relatively small cooling passages, the blades which had been submitted to engine running usually had a few comparatively large passages. Rotating blades were made exclusively by forging and extrusion processes from wrought nickel‐base alloys. Some nozzle guide vanes were cast.

Details

Aircraft Engineering and Aerospace Technology, vol. 41 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 March 2011

M. Vaezi, D. Safaeian and C.K. Chua

Conventional investment casting of turbine blades is a time consuming and expensive process due to the complications in wax injection steps and the complex shape of airfoil…

1993

Abstract

Purpose

Conventional investment casting of turbine blades is a time consuming and expensive process due to the complications in wax injection steps and the complex shape of airfoil surfaces. By using rapid investment casting, a substantial improvement in the gas turbine blade manufacturing process can be expected. However, this process needs to be able to compete with conventional investment casting from a dimensional accuracy view of point. The purpose of this paper is to investigate the manufacture of gas turbine blades via two indirect rapid tooling (RT) technologies, namely epoxy (EP) resin tooling and silicon rubber molding.

Design/methodology/approach

The second stage blade of a Ruston TA 1750 gas turbine (rated at 1.3 MW) was digitized by a coordinate measuring machine. The aluminum‐filled EP resin and silicon rubber molds were fabricated using StereoLithography master models. Several wax patterns were made by injection in the EP resin and silicone rubber molds. These wax patterns were utilized for ceramic shell fabrication and blade casting.

Findings

Dimensional inspection of cast blades showed that silicone rubber molding was not a suitable approach for production of blade wax patterns. The maximum deviation for the final cast blade made using the silicone rubber mold was +0.402 mm. The maximum deviation for the final cast blade made using the EP resin mold was lower at −0.282 mm. This showed that EP resin tooling could enable new cost‐effective solutions for small batch production of gas turbine blades.

Practical implications

The research results presented will give efficient industrial approach and scientific insight of the gas turbine blade manufacturing by use of rapid technologies.

Originality/value

There are some general research works related to utilization of rapid technologies for manufacturing of gas turbine blade. However, this paper presents a unique procedure of integrated reverse engineering and RT technologies for rapid investment casting of gas turbine blade through presenting comprehensive comparison between two techniques from dimensional accuracy view of point.

Details

Rapid Prototyping Journal, vol. 17 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 August 2016

Mohammad yaghoub Abdollahzadeh Jamalabadi

The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine

Abstract

Purpose

The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine blades on the temperature distribution of turbine blade and creep relaxation.

Design/methodology/approach

For this analysis, the creep flow behavior of Moly Ascoloy in operational temperature of gas turbine in full scale geometry is studied for various thermal radiation properties. The commercial software is used to pursue a coupled fields analysis for turbine blades in view of the structural force, materials kinematic hardening, and steady-state temperature field.

Findings

During steady-state operation, the thermal stress was found to be decreasing, whereas by considering the thermal radiation this rate was noticed to increase slightly. Also by increase of the distance between stator blades the thermal radiation effect is diminished. Finally, by decrease of the blade distance the failure probability and creep plastic deformation decrease.

Research limitations/implications

This paper describes the effect of thermal radiation in thermal-structural analysis of the gas turbine stator blade made of the super-alloy M-152.

Practical implications

Blade failures in gas turbine engines often lead to loss of all downstream stages and can have a dramatic effect on the availability of the turbine engines. There are many components in a gas turbine engine, but its performance is highly profound to only a few. The majority of these are hotter end rotating components.

Social implications

Three-dimensional finite element thermal and stress analyses of the blade were carried out for the steady-state full-load operation.

Originality/value

In the previous works the thermal radiation effects on creep behavior of the turbine blade have not performed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 April 2018

Fujuan Tong, Wenxuan Gou, Lei Li, Wenjing Gao and Zhu Feng Yue

Blade tip clearance has always been a concern for the gas turbine design and control. The numerical analysis of tip clearance is based on the turbine components displacement. The…

Abstract

Purpose

Blade tip clearance has always been a concern for the gas turbine design and control. The numerical analysis of tip clearance is based on the turbine components displacement. The purpose of this paper is to investigate the thermal and mechanical effects on a real cooling blade rather than the simplified model.

Design/methodology/approach

The coupled fluid-solid method is used. The thermal analysis involves solid and fluid domains. The distributions of blade temperature, stress and displacement have been calculated numerically under real turbine operating conditions.

Findings

Temperature contour can provide a reference for stress analysis. The results show that temperature gradient is the main source of solid stress and radial displacement. Compared with thermal or mechanical effect, there is a great change of stress magnitude for the thermomechanical effect. Large stress gradients are found between the leading and trailing edge of turbine cooling blade. Also, the blade radial displacement is mainly attributed to the thermal load rather than the centrifugal force. The analysis of the practical three-dimensional model has achieved the more precise results.

Originality/value

It is significant for clearance design and life prediction.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 November 2010

Zhixun Wen, Naixian Hou, Baizhi Wang and Zhufeng Yue

The purpose of this paper is to found a life model for the single crystal (SC) turbine blade based on the rate‐dependent crystallographic plasticity theory.

Abstract

Purpose

The purpose of this paper is to found a life model for the single crystal (SC) turbine blade based on the rate‐dependent crystallographic plasticity theory.

Design/methodology/approach

This life model has taken into consideration the creep and fatigue damages by the linear accumulation theory. A SC blade was taken from an aero‐engine, which had worked for 1,000 hours, as the illustration to validate the life model.

Findings

The crystallographic life model has a good prediction to the life and damage of the SC turbine blade. In the mean time, the micro damage study of the miniature specimens showed that creep damage has more serious influence on the material performance in the blade body but it is fatigue damage in the blade rabbet.

Originality/value

The life model can reflect the crystalline slip and deformation and crystallographic orientation of nickel‐based SC superalloys.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1952

M. Bentele, Dr.‐Ing. and C.S. Lowthian

UNDER steady load conditions, materials in gas turbines are subject to various forms of static and alternating stresses. Changes in the operating conditions such as starting, load…

80

Abstract

UNDER steady load conditions, materials in gas turbines are subject to various forms of static and alternating stresses. Changes in the operating conditions such as starting, load variations and shut down cause additional thermal stresses which limit the permissible rate of these changes in service. In stationary plants these effects can be minimized by adjustment of the starting and shut down procedure or by protection of the sensitive parts with a cooling flow. In gas turbines for propulsion purposes load changes are governed by external conditions, are more frequent and take place at a higher rate. The consequent thermal stresses are then referred to as thermal shocks. Various methods for testing the resistance of materials to thermal shocks have already been suggested and applied. However, they differ very widely, and no quantitative, or even comparable figures are available as yet.

Details

Aircraft Engineering and Aerospace Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 October 1981

R.G. WING and I.R. McGILL

Turbine blades in gas turbine engines operate at elevated temperatures and in highly oxidising atmospheres that can be contaminated with fuel residues and sea water salts. These…

Abstract

Turbine blades in gas turbine engines operate at elevated temperatures and in highly oxidising atmospheres that can be contaminated with fuel residues and sea water salts. These components, which are expensive to produce, are subjected to high stresses during operation but must be totally reliable during their design life. An economic way to maintain blade properties is to coat the base metal superalloy with a protective layer capable of resisting both high temperature oxidation and hot corrosion. Conventional aluminide coatings are widely used for this purpose but platinum aluminides offer improved corrosion resistance. A collaborative exercise involving Rolls‐Royce and Johnson Matthey has now resulted in the development of a platinum aluminide diffusion coating that offers some advantages over the commercial systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 53 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 June 2012

C.X‐Z. Zhang and I. Hassan

Numerical simulations were carried out for two cooling schemes, a circular hole and a louver cooling scheme, at the leading edge of a rotor blade in a complete turbine stage.

Abstract

Purpose

Numerical simulations were carried out for two cooling schemes, a circular hole and a louver cooling scheme, at the leading edge of a rotor blade in a complete turbine stage.

Design/methodology/approach

Two holes were positioned at the leading edge of a rotating blade, one on the pressure side and the other on the suction side. The methodology was validated with a circular hole case. Numerical results of cooling effectiveness for three blowing ratios at three rotational speeds were successfully obtained. Both blowing ratio and rotating speed of the rotor affect the cooling effectiveness level.

Findings

It was shown that for the circular hole, the blowing ratio is the dominant factor at low blowing ratios and the rotational speed is the dominant factor at high blow ratios when jet is prone to lift off in determining the cooling effectiveness level. For the louver scheme, a higher rotational speed leads to a higher level of cooling effectiveness since jet liftoff is avoided.

Originality/value

There are only a few studies of film cooling on a rotational turbine blade and very few studies of film cooling at the leading edge of a rotating turbine blade in the open literature. The present work presents a challenging CFD case. The analysis of film cooling at the leading edge of an airfoil was presented, which sheds light on the physics of film cooling and should prove helpful to the cooling designs of turbine blades.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000