Search results

1 – 10 of over 8000
Article
Publication date: 23 January 2009

Yan Yu and Jinping Ou

The purpose of this paper is to describe a wireless strain sensor system which will allow easier collection of accurate strain signals in civil engineering structures. The sensor…

Abstract

Purpose

The purpose of this paper is to describe a wireless strain sensor system which will allow easier collection of accurate strain signals in civil engineering structures. The sensor system is developed by integrating with resistance strain gauge, and the data fusion method is proposed based on batch estimation theory.

Design/methodology/approach

The principle of resistance strain gauge is discussed and the project of wireless acquisition system of strain signal is given. Wireless strain sensor is integrated with modularization method. Based on batch estimation theory, the data fusion method of strain signal is described. The experiment of wireless strain sensor system is finished on a typical concrete beam structure, the measure data processed by using the data fusion method and the arithmetic average value method is compared and analyzed.

Findings

The research result shows that the wireless strain sensor can be installed easily and thus is applied compatibly to local monitoring in civil engineering. The strain signal processed by the data fusion method is more accurate than the one processed by the arithmetic average value method, and thus the proposed data fusion method is fit for processing such slowly‐changing signals as strain.

Originality/value

In this paper, the innovation is shown from two views: one is applying wireless technique to collect strain signals; another is that data fusion with wide application can make measurements more precise and reliable by eliminating uncertain value than using the arithmetic average value method. In general, the developed wireless sensor system and the proposed data fusion method are fit for local monitoring.

Details

Sensor Review, vol. 29 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 1997

Dwayne M. Perry

Discusses the measurement of complex force and torque loads with strain‐gauge based sensors for both industrial and research environments. Cites applications that will find this…

868

Abstract

Discusses the measurement of complex force and torque loads with strain‐gauge based sensors for both industrial and research environments. Cites applications that will find this type of load sensing invaluable. Focuses on silicon strain‐gauge based sensors that can withstand high overloads without damage.

Details

Sensor Review, vol. 17 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 June 2007

Gao Zhan‐feng, Du Yan‐liang, Sun Bao‐chen and Jin Xiu‐mei

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

1601

Abstract

Purpose

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

Design/methodology/approach

A remote strain monitoring system based on F‐P optic fiber and virtual instrument is designed to monitor the strains of a railway bridge.

Findings

The application results show that the Fraby‐Perot optical fiber sensors can accurately measure strain and they are suitable for the long‐term and automatic monitoring. In addition, the system has several advantages over conventional structural instruments including fast response, ability of both static and dynamic monitoring, absolute measurement, immunity to interferences such as lightning strikes, electromagnetic noise and radio frequency, low attenuation of light signals in long fiber optic cables.

Practical implications

Health monitoring of structures is getting more and more recognition all over the world because it can minimize the cost of reparation and maintenance and ensure the safety of structures. A strain monitoring system based on F‐P optic fiber sensor was developed according to the health monitoring requirements of Wuhu Yangtze River Railway Bridge, which is the first cable‐stayed bridge with a maximum span of 312 m carrying both railway and highway traffic in China. It has run stably in the monitoring field more than two years and fulfilled the monitoring requirement very well. Now the system has been transplanted successfully to the Zhengzhou Yellow Railway Bridge for strain monitoring. So the work can be referenced by other similar health monitoring projects.

Originality/value

Long‐term, real‐time monitoring of strain using FP fiber optic sensors in railway bridge is an innovation. A remote strain data acquisition and real‐time processing are another character of the system. The work studied can be referenced by other structures monitoring, such as tunnel, concrete bridges, concrete and earth dams.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 17 March 2023

Kexin Zhang, Dachao Li and Xingwei Xue

In this paper, taking a p-section girder cable-stayed bridge as an example, the construction monitoring and load test of the bridge are implemented.

Abstract

Purpose

In this paper, taking a p-section girder cable-stayed bridge as an example, the construction monitoring and load test of the bridge are implemented.

Design/methodology/approach

In order to ensure the safety of cable-stayed bridge structure in construction and achieve the internal force state of the completed bridge, the construction process is monitored for liner and stress of the p-section girder, construction error and safety state during construction. At the same time, to verify whether the bridge can meet the design requirements, the static and dynamic load tests are done.

Findings

The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements. The final measured stress state of the structure is within the allowable range of the cable-stayed bridge, and the structural stress state is normal and meets the specification requirements. The load tests results show that the measured deflection of the midspan section of the main girder is less than the theoretical calculation value. The maximum deflection of the main girder is 48.03 mm, which is less than 54.25 mm of the theoretical value, indicating that the main girder has sufficient structural stiffness. Under the dynamic load test, the natural frequency of the three spans of the bridge is less than the theoretical frequency.

Originality/value

This study can provide important reference value for the construction and maintenance of similar p-section girder cable-stayed bridges.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 February 2023

Natalia García-Fernández, Manuel Aenlle, Adrián Álvarez-Vázquez, Miguel Muniz-Calvente and Pelayo Fernández

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Abstract

Purpose

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Design/methodology/approach

Fatigue monitoring requires a fatigue model of the material, the stresses at specific points of the structure, a cycle counting technique and a fatigue damage criterion. Firstly, this paper reviews existing structural health monitoring (SHM) techniques, addresses their principal classifications and presents the main characteristics of each technique, with a particular emphasis on modal-based methodologies. Automated modal analysis, damage detection and localisation techniques are also reviewed. Fatigue monitoring is an SHM technique which evaluate the structural fatigue damage in real time. Stress estimation techniques and damage accumulation models based on the S-N field and the Miner rule are also reviewed in this paper.

Findings

A vast amount of research has been carried out in the field of SHM. The literature about fatigue calculation, fatigue testing, fatigue modelling and remaining fatigue life is also extensive. However, the number of publications related to monitor the fatigue process is scarce. A methodology to perform real-time structural fatigue monitoring, in both time and frequency domains, is presented.

Originality/value

Fatigue monitoring can be combined (applied simultaneously) with other vibration-based SHM techniques, which might significantly increase the reliability of the monitoring techniques.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 September 2012

Michael V. Gangone, Matthew J. Whelan, Kerop D. Janoyan and Levon Minnetyan

The purpose of this paper is to further validate a wireless sensor system developed at Clarkson University for structural monitoring of highway bridges. The particular bridge…

Abstract

Purpose

The purpose of this paper is to further validate a wireless sensor system developed at Clarkson University for structural monitoring of highway bridges. The particular bridge monitored employs a fiber reinforced polymer (FRP) panel system which is fairly innovative in the field of civil engineering design. The superstructure was monitored on two separate occasions to determine a change in structural response and see how the structural system performs over time.

Design/methodology/approach

A series of wireless sensor units was deployed at various locations of the steel superstructure, to measure both the modal response from acceleration measurements as well as quasi‐static and dynamic strain response. Ambient and forced loading conditions were applied to measure the response. Data results were compared over two separate periods approximately nine months apart.

Findings

The first eight mode shapes were produced from output‐only system identification providing natural frequencies ranging from approximately 6 to 42 Hz. The strain response was monitored over two different testing periods to measure various performance characteristics. Neutral axis, distribution factor, impact factor and end fixity were determined. Results appeared to be different over the two testing periods. They indicate that the load rating of the superstructure decreased over the nine month period, possibly due to deterioration of the materials or composite action.

Research limitations/implications

The results from the two testing periods indicate that further testing needs to be completed to validate the change in response. It is difficult to say with certainty that the significant change in response is due to bridge deterioration and not other factors such as temperature effects on load rating. The sensor system, however, proved to provide high quality data and responses indicating its successful deployment for load testing and monitoring of highway infrastructure.

Originality/value

The paper provides a depiction of the change in structural behavior of a bridge superstructure using a wireless sensor system. The wireless system provided high‐rate data transmission in real time. Load testing at two different points in time, eight months apart, showed a significant change in bridge behavior. The paper provides a practical and actual physical load test and rating during these two periods for quantifiable change in response. It is shown that the wireless system is capable of infrastructure monitoring and that possible deterioration is expected with this particular bridge design. Additionally, the load testing occurred during different seasons, which could create cause for temperature effects in load rating. This can provide a basis for future performance monitoring techniques and structural health monitoring.

Article
Publication date: 12 July 2024

Mohamed Saifeldeen, Ahmed Monier and Nariman Fouad

This paper presents a novel method for identifying damage in reinforced concrete (RC) bridges, utilizing macro-strain data from distributed long-gauge sensors installed on the…

Abstract

Purpose

This paper presents a novel method for identifying damage in reinforced concrete (RC) bridges, utilizing macro-strain data from distributed long-gauge sensors installed on the concrete surface.

Design/methodology/approach

The method relies on the principle that heavy vehicles induce larger dynamic vibrations, leading to increased strain and crack formation compared to lighter vehicles. By comparing the absolute macro-strain ratio (AMSR) of a reference sensor with a network of distributed sensors, damage locations can be effectively pinpointed from a single data collection session. Finite-element modeling was employed to validate the method's efficacy, demonstrating that the AMSR ratio increases significantly in the presence of cracks. Experimental validation was conducted on a real-world bridge in Japan, confirming the method's reliability under normal traffic conditions.

Findings

This approach offers a practical and efficient means of detecting bridge damage, potentially enhancing the safety and longevity of infrastructure systems.

Originality/value

Original research paper.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 February 2017

Roman Ruzek, Martin Kadlec, Konstantinos Tserpes and Evaggelos Karachalios

Compression is critical loading condition for composite airframes. Compression behaviour of structures with or without damages is a weak point for composite fuselage panels. This…

Abstract

Purpose

Compression is critical loading condition for composite airframes. Compression behaviour of structures with or without damages is a weak point for composite fuselage panels. This is one of the reasons for need of continuous in-service health monitoring of composite structures. The purpose of this paper is to characterize the compression panel behaviour on the base of a developed and implemented structural health monitoring (SHM) system.

Design/methodology/approach

The SHM system based on fibre optic Bragg grating (FOBG) sensors and standard resistance strain gauges (SGs) was placed onto/into (embedded or bonded) three stiffened carbon fibre reinforced polymer (CFRP) fuselage panels. The FOBG sensor system was used to monitor the structural integrity of the reference, impacted, and fatigued panels under compression loading. Both barely visible impact damage and visible impact damage were created to evaluate their influence on the panel behaviour. The functionality of the SHM system was verified through mechanical testing.

Findings

Experimental data showed the presence of impact damages significantly changes the buckling modes development and deformation behaviour of the panels. Some differences between the optical and SG sensors during buckling were observed. The buckling waves and failure development were very well indicated during loading by all sensors located on the panel surface but not by the embedded sensors. Good agreement between the data from the SGs and FOBG sensors was achieved for all sensors placed on the stringers, which did not buckle. The good reliability of FOBG sensors during the fatigue and static testing up to panel failure was verified.

Originality/value

The paper gives information about different buckling behaviour of CFRP fuselage stiffened panels in compression. The paper gives detailed information about measured signals from different sensors based on their location on/in the panel structure for realistic loading scenario of composite aerostructures. The paper gives an integrated overview of sensors placement considering possibilities to predicate structure behaviour.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 October 2020

Wenyuan Liu, Chunde Piao, Yazhou Zhou and Chaoqi Zhao

The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining…

Abstract

Purpose

The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining area can be divided into zones with different degrees of risk, and the prevention measures can be taken for the areas predicted to have large deformation.

Design/methodology/approach

A similar-material model was built by geological and mining conditions of Zhangzhuang Coal Mine. The evolution characteristics of overburden strain were studied by using the distributed optical fiber sensing (DOFS) technology and the predictive model about overburden deformation was established by applying machine learning. The modeling method of the predictive model based on the similar-material model test was summarized. Finally, this method was applied to engineering.

Findings

The strain value predicted by the proposed model was compared with the actual measured value and the accuracy is as high as 97%, which proves that it is feasible to combine DOFS technology with machine learning and introduce it into overburden deformation prediction. When this method was applied to engineering, it also showed good performance.

Originality/value

This paper helps to promote the application of machine learning in the geosciences and mining engineering. It provides a new way to solve similar problems.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2005

Robert Bogue

This paper describes a recent collaborative project involving the development of a multiplexed fibre Bragg grating (FBG) sensor system for structural integrity monitoring.

Abstract

Purpose

This paper describes a recent collaborative project involving the development of a multiplexed fibre Bragg grating (FBG) sensor system for structural integrity monitoring.

Design/methodology/approach

The system is described and field trials on both conventional and novel composite bridges are discussed. A FBG sensor‐based structural monitoring system was developed, based on a fluorescent fibre as the optical source. It used a tuneable, fibre‐coupled, Fabry‐Perot filter, actuated by piezoelectric transducers and operated over the bandwidth of the source at up to 250 scans/second. Light from the source was filtered and reflected back from the Bragg gratings, through optical couplers, to eight photodiode detectors. These detected the resulting time‐domain spectra of the sensors in each of the serially connected sensor arrays. The system was tested at City University and then subjected to trials on the Mjosund road bridge in Norway and on West Mill bridge in Oxfordshire, UK, which is the first bridge to be fabricated from a new type of composite material.

Findings

During the Norwegian trials the system was arranged with four or five FBG sensors per channel giving a total of 32 measurement points with eight parallel channels. Twelve conventional foil strain gauges and a number of thermocouples were also installed. Different static and dynamic loads were applied over a period of 18 months and the results showed that the thermally compensated strain data obtained optically matched those from the resistive gauges to within <5 με. During the construction stage of the Oxfordshire bridge, sections of the decking and longitudinal composite support beams were instrumented with 40 FBG sensors with temperature compensation, placed at pre‐selected sites of maximum strain. These exhibited a resolution of ±5 με and an operating range of over ±2,000 με.

Originality/value

This research has shown that multiplexed, multi‐point FBG sensor systems can accurately and reliably monitor both static and dynamic strains in large structures over a range of temperatures and for extended periods of time.

Details

Sensor Review, vol. 25 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 8000