Search results

1 – 10 of 81
Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

Open Access
Article
Publication date: 3 June 2022

Peter Gangl, Stefan Köthe, Christiane Mellak, Alessio Cesarano and Annette Mütze

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low…

Abstract

Purpose

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material used, by means of gradient-based free-form shape optimization.

Design/methodology/approach

The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization algorithm to the case of multiple objective functions by determining updates, which represent a descent of all involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.

Findings

The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with very low computational cost. This paper validates the results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm.

Originality/value

This paper applies the presented gradient-based multi-objective optimization algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives. The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape optimization is novel in the context of electric machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 16 April 2018

Guillermo A. Riveros and Manuel E. Rosario-Pérez

The combined effects of several complex phenomena cause the deterioration of elements in steel hydraulic structures (SHSs) within the US lock system: corrosion, cracking and…

1752

Abstract

Purpose

The combined effects of several complex phenomena cause the deterioration of elements in steel hydraulic structures (SHSs) within the US lock system: corrosion, cracking and fatigue, impact and overloads. Predicting the future condition state of these structures by the use of current condition state inspection data can be achieved through the probabilistic chain deterioration model. The purpose of this study is to derive the transition probability matrix using final elements modeling of a miter gate.

Design/methodology/approach

If predicted accurately, this information would yield benefits in determining the need for rehabilitation or replacement of SHS. However, because of the complexity and difficulties on obtaining sufficient inspection data, there is a lack of available condition states needed to formulate proper transition probability matrices for each deterioration case.

Findings

This study focuses on using a three-dimensional explicit finite element analysis (FEM) of a miter gate that has been fully validated with experimental data to derive the transition probability matrix when the loss of flexural capacity in a corroded member is simulated.

Practical implications

New methodology using computational mechanics to derive the transition probability matrices of navigation steel structures has been presented.

Originality/value

The difficulty of deriving the transition probability matrix to perform a Markovian analysis increases when limited amount of inspection data is available. The used state of practice FEM to derive the transition probability matrix is not just necessary but also essential when the need for proper maintenance is required but limited amount of the condition of the structural system is unknown.

Open Access
Article
Publication date: 22 September 2020

Hung T. Nguyen

While there exist many surveys on the use stochastic frontier analysis (SFA), many important issues and techniques in SFA were not well elaborated in the previous surveys, namely…

4713

Abstract

Purpose

While there exist many surveys on the use stochastic frontier analysis (SFA), many important issues and techniques in SFA were not well elaborated in the previous surveys, namely, regular models, copula modeling, nonparametric estimation by Grenander’s method of sieves, empirical likelihood and causality issues in SFA using regression discontinuity design (RDD) (sharp and fuzzy RDD). The purpose of this paper is to encourage more research in these directions.

Design/methodology/approach

A literature survey.

Findings

While there are many useful applications of SFA to econometrics, there are also many important open problems.

Originality/value

This is the first survey of SFA in econometrics that emphasizes important issues and techniques such as copulas.

Details

Asian Journal of Economics and Banking, vol. 4 no. 3
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 3 October 2019

Lin Qi, Wenbo Zhang, Ronglai Sun and Fang Liu

Giant orthogonal grid barrel vault is generated by deleting members in the inessential force transfer path of the two-layer lattice barrel vault. Consisting of members in the…

1411

Abstract

Purpose

Giant orthogonal grid barrel vault is generated by deleting members in the inessential force transfer path of the two-layer lattice barrel vault. Consisting of members in the essential transfer path only, giant orthogonal grid barrel vault is a new type of structure with clear mechanical behavior and efficient material utilization. The paper aims to discuss this issue.

Design/methodology/approach

The geometrical configuration of this structure is analyzed, and the geometrical modeling method is proposed. When necessary parameters are determined, such as the structural span, length, vault rise, longitudinal and lateral giant grid number and section height to top chord length ratio of the lattice member, the structure geometrical model can be generated.

Findings

Numerical models of giant orthogonal grid barrel vaults with different rise–span ratios are built using the member model that can simulate the pre-buckling and post-buckling behavior. So the possible member buckle-straighten process and the plastic hinge form–disappear process of the structure under strong earthquake can be simulated.

Originality/value

Seismic analysis results indicate that when the structure damages under strong earthquake there are a large number of buckling members and few endpoint plastic hinges in the structure. Dynamic damage of giant orthogonal grid barrel vault under strong earthquake is caused by buckling members that weaken the structural bearing capacity.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Book part
Publication date: 16 September 2022

Pedro Brinca, Nikolay Iskrev and Francesca Loria

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of

Abstract

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of such exercises and to methodological departures from the baseline methodology. Little attention has been paid to identification issues within these classes of models. In this chapter, the authors investigate whether such issues are of concern in the original methodology and in an extension proposed by Šustek (2011) called Monetary Business Cycle Accounting. The authors resort to two types of identification tests in population. One concerns strict identification as theorized by Komunjer and Ng (2011) while the other deals both with strict and weak identification as in Iskrev (2010). Most importantly, the authors explore the extent to which these weak identification problems affect the main economic takeaways and find that the identification deficiencies are not relevant for the standard BCA model. Finally, the authors compute some statistics of interest to practitioners of the BCA methodology.

Details

Essays in Honour of Fabio Canova
Type: Book
ISBN: 978-1-80382-636-3

Keywords

Open Access
Article
Publication date: 19 April 2024

Bong-Gyu Jang and Hyeng Keun Koo

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components…

Abstract

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components: the price of a European put option and the premium associated with the early exercise privilege. Our analysis demonstrates that, under these conditions, the perpetual put option consistently commands a higher price during periods of high volatility compared to those of low volatility. Moreover, we establish that the optimal exercise boundary is lower in high-volatility regimes than in low-volatility regimes. Additionally, we develop an analytical framework to describe American puts with an Erlang-distributed random-time horizon, which allows us to propose a numerical technique for approximating the value of American puts with finite expiry. We also show that a combined approach involving randomization and Richardson extrapolation can be a robust numerical algorithm for estimating American put prices with finite expiry.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1229-988X

Keywords

Content available
Book part
Publication date: 1 January 1991

Abstract

Details

Operations Research for Libraries and Information Agencies: Techniques for the Evaluation of Management Decision Alternatives
Type: Book
ISBN: 978-0-12424-520-4

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

1 – 10 of 81