Search results

1 – 10 of 405
Article
Publication date: 1 June 1995

Gabriel Bugeda, Miguel Cervera, Guillermo Lombera and Eugenio Onate

Stereolithography (SLA) is one of the most important techniques used in rapid prototyping processes. It has a great industrial interest because it allows for dramatic time savings…

1203

Abstract

Stereolithography (SLA) is one of the most important techniques used in rapid prototyping processes. It has a great industrial interest because it allows for dramatic time savings with respect to traditional manufacturing processes. One of the main sources of error in the final dimensions of the prototype is the curl distortion effect owing to the shrinkage of the resin during the SLA process. Presents a study of the influence of different constructive and numerical parameters in the curl distortion, an analysis which was made using the computer code stereolithography analysis program, developed to model SLA processes using the finite element method. Also briefly presents this code.

Details

Rapid Prototyping Journal, vol. 1 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2000

Guangming Zhang, Yi‐chien Tsou and Alfred L. Rosenberger

The reconstructed skull of the primate fossil Homunculus, a Miocene New World monkey from Argentina, offers unique opportunities for further study and has revealed information…

1332

Abstract

The reconstructed skull of the primate fossil Homunculus, a Miocene New World monkey from Argentina, offers unique opportunities for further study and has revealed information that could not be observed or appreciated on the original damaged specimens. This paper presents the process that applies the rapid prototyping methodology to reconstruct and produce such a physical model of the Homunculus’s skull. A laser scanner is used to digitize three pieces of sharp epoxy casts from the left facial skull and the mandible, which were broken apart during fossilization. Commercial software systems are used to develop image models of the fully reconstructed face and lower jaw. A stereolithography process is used to build the physical model.

Details

Rapid Prototyping Journal, vol. 6 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Mohammad Vahid Ehteshamfar, Amir Kiadarbandsari, Ali Ataee, Katayoun Ghozati and Mohammad Ali Bagherkhani

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However…

Abstract

Purpose

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However, the staircase effect poses a challenge to the application of invisible orthodontics in the dental industry. The purpose of this study is to implement chemical postprocessing technique by using isopropyl alcohol as a solvent to overcome this challenge.

Design/methodology/approach

Fifteen experiments were conducted using a D-optimal design to investigate the effect of different concentrations and postprocessing times on the surface roughness, material removal rate (MRR), hardness and cost of SLA dental parts required for creating a clear customized aligner, and a container was constructed for chemical treatment of these parts made from photocurable resin.

Findings

The study revealed that the chemical postprocessing technique can significantly improve the surface roughness of dental SLA parts, but improper selection of concentration and time can lead to poor surface roughness. The optimal surface roughness was achieved with a concentration of 90 and a time of 37.5. Moreover, the dental part with the lowest concentration and time (60% and 15 min, respectively) had the lowest MRR and the highest hardness. The part with the highest concentration and time required the greatest budget allocation. Finally, the results of the multiobjective optimization analysis aligned with the experimental data.

Originality/value

This paper sheds light on a previously underestimated aspect, which is the pivotal role of chemical postprocessing in mitigating the adverse impact of stair case effect. This nuanced perspective contributes to the broader discourse on AM methodologies, establishing a novel pathway for advancing the capabilities of SLA in dental application.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

Additive manufacturing (AM) or solid freeform fabrication (SFF) technique is extensively used to produce intrinsic 3D structures with high accuracy. Its significant contributions in the field of tissue engineering (TE) have significantly increased in the recent years. TE is used to regenerate or repair impaired tissues which are caused by trauma, disease and injury in human body. There are a number of novel materials such as polymers, ceramics and composites, which possess immense potential for production of scaffolds. However, the major challenge is in developing those bioactive and patient-specific scaffolds, which have a required controlled design like pore architecture with good interconnectivity, optimized porosity and microstructure. Such design not only supports cell proliferation but also promotes good adhesion and differentiation. However, the traditional techniques fail to fulfill all the required specific properties in tissue scaffold. The purpose of this study is to report the review on AM techniques for the fabrication of TE scaffolds.

Design/methodology/approach

The present review paper provides a detailed analysis of the widely used AM techniques to construct tissue scaffolds using stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), binder jetting (BJ) and advanced or hybrid additive manufacturing methods.

Findings

Subsequently, this study also focuses on understanding the concepts of TE scaffolds and their characteristics, working principle of scaffolds fabrication process. Besides this, mechanical properties, characteristics of microstructure, in vitro and in vivo analysis of the fabricated scaffolds have also been discussed in detail.

Originality/value

The review paper highlights the way forward in the area of additive manufacturing applications in TE field by following a systematic review methodology.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 January 2023

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching…

Abstract

Purpose

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching, self-assembly and self-tightening. Advancements in today’s technology led to the easy fabrication of such novel materials using 3D printing techniques. When an external stimulus causes a 3D printed specimen to change shape on its own, this process is known as 4D printing. This study aims to investigate the effect of graphene nano platelet (GNPs) on the shape memory behaviour of shape memory photo polymer composites (SMPPCs) and to optimize the shape-changing response by using the Taguchi method.

Design/methodology/approach

SMPPCs are synthesized by blending different weight fractions (Wt.%) of flexible or soft photopolymer (FPP) resin with hard photopolymer (HPP) resin, then reinforced with GNPs at various Wt.% to the blended PP resin, and then fabricated using masked stereolithography (MSLA) apparatus. The shape memory test is conducted to assess the shape recovery time (T), shape fixity ratio (Rf), shape recovery ratio (Rr) and shape recovery rate (Vr) using Taguchi analysis by constructing an L9 orthogonal array with parameters such as Wt.% of a blend of FPP and HPP resin, Wt.% of GNPs and holding time.

Findings

SMPPCs with A3, B3 and C2 result in a faster T with 2 s, whereas SMPPCs with A1, B1 and C3 result in a longer T with 21 s. The factors A and B are ranked as the most significant in the Pareto charts that were obtained, whereas C is not significant. It can be seen from the heatmap plot that when factors A and B increase, T is decreasing and Vr is increasing. The optimum parameters for T and Vr are A3, B3 and C2 at the same time for Rf and Rr are A1, B3 and C1.

Research limitations/implications

Faster shape recovery results from a higher Wt.% of FPP resin in a blend than over a true HPP resin. This is because the flexible polymer links in FPP resin activate more quickly over time. However, a minimum amount of HPP resin also needs to be maintained because it plays a role in producing higher Rf and Vr. The use of GNPs as reinforcement accelerates the T because nanographene conducts heat more quickly, releasing the temporary shape of the specimen more quickly.

Originality/value

The use of FPP and HPP resin blends, fabricating the 4D-printed SMPPCs specimens with MSLA technology, investigating the effect of GNPs and optimizing the process parameters using Taguchi and the work was validated using confirmation tests and regression analysis, which increases the originality and novelty.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2022

Omar Alageel

Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy…

Abstract

Purpose

Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy, as well as the benefits of saving materials and treatment time. This study aims to explain the principles of the main 3D printing technologies used for manufacturing dental prostheses and devices, with details of their manufacturing processes and characteristics. This review presents an overview of available 3D printing technologies and materials for dental prostheses and devices.

Design/methodology/approach

This review was targeted to include publications pertaining to the fabrication of dental prostheses and devices by 3D printing technologies between 2012 and 2021. A literature search was carried out using the Web of Science, PubMed, Google Scholar search engines, as well as the use of a manual search.

Findings

3D printing technologies have been used for manufacturing dental prostheses and devices using a wide range of materials, including polymers, metals and ceramics. 3D printing technologies have demonstrated promising experimental outcomes for the fabrication of dental prostheses and devices. However, further developments in the materials for fixed dental prostheses are required.

Originality/value

3D printing technologies are effective and commercially available for the manufacturing of polymeric and metallic dental prostheses. Although the printing of dental ceramics and composites for dental prostheses is promising, further improvements are required.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1998

Karl‐H. Grote, Michael L. Walo and Jeffrey L. Miller

“The battle is won in the strategy room, not on the battlefield.” These words by Sun Tzu are certainly very important for the implementation of new technologies, such as solid…

1316

Abstract

“The battle is won in the strategy room, not on the battlefield.” These words by Sun Tzu are certainly very important for the implementation of new technologies, such as solid freeform manufacturing (SFM). Experiences of strategies to incorporate these systems to the “manufacturing battlefield” will be discussed and suggestions given for the efficient use by employees. Looks, for example, at IPPD training strategy at McDonnell Douglas Aerospace and outlines the eight modules involved in their training. Focuses also on training in rapid prototyping outlining the various elements involved.

Details

Integrated Manufacturing Systems, vol. 9 no. 4
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 26 July 2021

Rajae Jemghili, Abdelmajid Ait Taleb and Mansouri Khalifa

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the…

Abstract

Purpose

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the published studies in this area. This paper aims to evaluate AM research trends based on 4607 publications most cited from year 2010 to 2020.

Design/methodology/approach

The research methodology is bibliometric indicators and network analysis, including analysis based on keywords, citation analysis, productive journal, related published papers and authors indicators. Two free available software were employed VOSviewer and Bibexcel.

Findings

Keywords analysis results indicate that among the AM processes, Selective Laser Melting and Fused Deposition Modeling techniques, are the two processes ranked on top of the techniques employed and studied with 35.76% and 20.09% respectively. The citation analysis by VOSviewer software, reveals that the medical applications field and the fabrication of metal parts are the areas that interest researchers greatly. Different new research niches, as pharmaceutical industry, digital construction and food fabrication are growing topics in AM scientific works. This study reveals that journals “Materials & design”, “Advanced materials”, “Acs applied materials & interfaces”, “Additive manufacturing”, “Advanced functional materials” and “Biofabrication” are the most productive and influential in AM scientific research.

Originality/value

The results and conclusions of this work can be used as indicators of trends in AM research and/or as prospects for future studies in this area.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2023

Ashish Kaushik and Ramesh Kumar Garg

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the…

Abstract

Purpose

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the characteristics of the materials, which are essential in determining their clinical efficacy when exposed to oral surroundings.

Design/methodology/approach

A collective analysis of published articles covering the use of rapid prototyping technologies in the fabrication of occlusal splints, including manufacturing workflow description and essential properties (mechanical- and thermal-based) evaluation of biocompatible splinting materials, was performed.

Findings

Without advances in rapid prototyping processes and materials engineering, occlusal splints would tend to underperform clinically due to biomechanical limitations.

Social implications

Three-dimensional printing can improve the process capabilities for commercial customization of biomechanically efficient occlusal splints.

Originality/value

Rapid technological advancement in dentistry with the extensive utilization of rapid prototyping processes, intra-oral scanners and novel biomaterial seems to be the potential breakthrough in the fabrication of customized occlusal splints which have endorsed occlusal splint therapy (OST) as a cornerstone of orthodontic treatment.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 405