Search results

1 – 10 of 562
Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 19 September 2023

Cleyton Farias and Marcelo Silva

The authors explore the hypothesis that some movements in commodity prices are anticipated (news shocks) and can trigger aggregate fluctuations in small open emerging economies…

Abstract

Purpose

The authors explore the hypothesis that some movements in commodity prices are anticipated (news shocks) and can trigger aggregate fluctuations in small open emerging economies. This paper aims to discuss the aforementioned objective.

Design/methodology/approach

The authors build a multi-sector dynamic stochastic general equilibrium model with endogenous commodity production. There are five exogenous processes: a country-specific interest rate shock that responds to commodity price fluctuations, a productivity (TFP) shock for each sector and a commodity price shock. Both TFP and commodity price shocks are composed of unanticipated and anticipated components.

Findings

The authors show that news shocks to commodity prices lead to higher output, investment and consumption, and a countercyclical movement in the trade-balance-to-output ratio. The authors also show that commodity price news shocks explain about 24% of output aggregate fluctuations in the small open economy.

Practical implications

Given the importance of both anticipated and unanticipated commodity price shocks, policymakers should pay attention to developments in commodity markets when designing policies to attenuate the business cycles. Future research should investigate the design of optimal fiscal and monetary policies in SOE subject to news shocks in commodity prices.

Originality/value

This paper contributes to the knowledge of the sources of fluctuations in emerging economies highlighting the importance of a new source: news shocks in commodity prices.

Details

EconomiA, vol. 24 no. 2
Type: Research Article
ISSN: 1517-7580

Keywords

Article
Publication date: 24 April 2024

Hangyue Zhang, Yanchu Yang and Rong Cai

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further…

Abstract

Purpose

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further ascent motion after airborne launching. In terms of unmanned aerial vehicles (UAVs), the tailspin state and the charge-out process with an anti-tailspin parachute-assisted suspending are analyzed. Then, the authors conduct trajectory optimization simulations for the long-distance gliding process.

Design/methodology/approach

The balloon kinematics model and the parachute Kane multibody dynamic model are established. Using steady-state tailspin to reduced-order analysis and achieving change-out simulation by parachute suspension dynamic model. A reentry optimization control problem is developed and the Radau pseudo-spectral method is used to calculate the glide trajectory.

Findings

The established dynamic model and trajectory optimization method can effectively simulate the motion process of balloons and UAVs. The system mass reduction for launching UAVs will not cause damage to the balloon structure. The anti-tailspin parachute can reduce the UAV attack angles effectively. The UAV can glide to the designated target position by adjusting the attack angle and sideslip angle. The farthest flight distance after launching from 20 km height is 94 km and the gliding time is 40 min, which demonstrates the potential application advantage of high-altitude launching.

Practical implications

The research content and related conclusions of this article achieve a closed-loop analysis of the flight mission chain for the “balloon-borne UAV system,” which provides simulation references for relevant balloon launching experiments.

Originality/value

This paper establishes a complete set of numerical simulation models and can effectively analyze various postlaunching behaviors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 17 April 2023

Christopher Stutzman, Andrew Przyjemski and Abdalla R. Nassar

Powder bed fusion processes are common due to their ability to build complex components without the need for complex tooling. While additive manufacturing has gained increased…

Abstract

Purpose

Powder bed fusion processes are common due to their ability to build complex components without the need for complex tooling. While additive manufacturing has gained increased interest in industry, academia and government, flaws are often still generated during the deposition process. Many flaws can be avoided through careful processing parameter selections including laser power, hatch spacing, spot size and shielding gas flow rate. The purpose of this paper is to study the effect of shielding gas flow on vapor plume behavior and on final deposition quality. The goal is to understand more fully how each parameter affects the plume and deposition process.

Design/methodology/approach

A filtered-photodiode based sensor was mounted onto a commercial EOS M280 machine to observed plume emissions. Three sets of single tracks were printed, each with one of three gas flow rates (nominal, 75% nominal and 50% nominal). Each set contained single-track beads deposited atop printed pedestals to ensure a steady-state, representative build environment. Each track had a set power and speed combination which covered the typical range of processing parameters. After deposition, coupons were cross-sectioned and bead width and depth were measured. Finally, bead geometry was compared to optical emissions originating in the plume.

Findings

The results show that decreasing gas flow rate, increasing laser power or increasing scan speed led to increased optical emissions. Furthermore, decreasing the gas cross-flow speed led to wider and shallower melt pools.

Originality/value

To the best of the authors’ knowledge, this paper is among the first to present a relationship among laser parameters (laser power, scan speed), gas flow speed, plume emissions and bead geometry using high-speed in situ data in a commercial machine. This study proposes that scattering and attenuation from the plume are responsible for deviations in physical geometry.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 July 2023

Mohamed Abd Alsamieh

This study aims to present a numerical solution for the analysis of the influence of surface roughness as presented by a sinusoidal ripple of different amplitude and wavelength on…

Abstract

Purpose

This study aims to present a numerical solution for the analysis of the influence of surface roughness as presented by a sinusoidal ripple of different amplitude and wavelength on the performance of transient elastohydrodynamic lubrication at motion start-up under different operational parameters of entraining speed and load as well as different acceleration rates.

Design/methodology/approach

A statistical asperity micro-contact model represented by a sinusoidal ripple expressed by two parameters (wavelength and undeformed amplitude) is considered. The ball equation of motion is used to calculate the force on the ball as it starts to move. The time-dependent Reynolds equation is solved together with surface deformation and statistical asperity models using the Newton–Raphson technique with the Gauss–Seidel iteration method.

Findings

The behaviour of the film thickness was found to be strongly influenced by the acceleration rate for different ripple amplitude and wavelength parameters. The effect of increasing the final entraining speed will eventually lead to rapid film thickness build-up and increase the film thickness jump at the moment of motion start-up. The effect of increasing applied load is to reduce the deviation of the minimum film thickness jump at the start-up of motion, making its value approximately equal to the steady-state value over the entire run-time period.

Originality/value

Influence of surface roughness for various wavelength and undeformed amplitude on the performance of transient elastohydrodynamic lubrication at motion start-up is presented at different acceleration rates as well as for different operating parameters of entraining speed and load. Ball equation of motion is used to calculate the force on the ball as it starts to move.

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2023

Qian Wang, Biao Ma, Liang Yu, Man Chen, Guoyu Wang and Liangjie Zheng

This paper aims to explore the influence of applied pressure on the tribological properties of the friction component in a wet multi-disc clutch during the running-in process.

Abstract

Purpose

This paper aims to explore the influence of applied pressure on the tribological properties of the friction component in a wet multi-disc clutch during the running-in process.

Design/methodology/approach

The running-in evolutionary was explored in terms of global friction performance. The variation of friction torque and mean COF of the initial 300 engagement cycles was obtained by full-scale tests. Finally, an optical microscope was used to detect the wear characteristics of friction surfaces.

Findings

The applied pressure showed a significant influence on the tribological behaviors of wet clutches during the running-in process. The mean COF decreased and then increases with the increase of the applied pressure. A higher applied pressure contributed to more asperity summits being sheared, thus resulting in a smoother surface. Considering a suitable wore performance, properly applied pressure is necessary.

Originality/value

The results provide theoretical guidance for selecting the optimal applied pressure in the running-in of wet clutches.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2022-0256/

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 February 2022

Hingmire Vishal Sharad, Santosh R. Desai and Kanse Yuvraj Krishnrao

In a wireless sensor network (WSN), the sensor nodes are distributed in the network, and in general, they are linked through wireless intermediate to assemble physical data. The…

Abstract

Purpose

In a wireless sensor network (WSN), the sensor nodes are distributed in the network, and in general, they are linked through wireless intermediate to assemble physical data. The nodes drop their energy after a specific duration because they are battery-powered, which also reduces network lifetime. In addition, the routing process and cluster head (CH) selection process is the most significant one in WSN. Enhancing network lifetime through balancing path reliability is more challenging in WSN. This paper aims to devise a multihop routing technique with developed IIWEHO technique.

Design/methodology/approach

In this method, WSN nodes are simulated originally, and it is fed to the clustering process. Meanwhile, the CH is selected with low energy-based adaptive clustering model with hierarchy (LEACH) model. After CH selection, multipath routing is performed by developed improved invasive weed-based elephant herd optimization (IIWEHO) algorithm. In addition, the multipath routing is selected based on certain fitness functions like delay, energy, link quality and distance. However, the developed IIWEHO technique is the combination of IIWO method and EHO algorithm.

Findings

The performance of developed optimization method is estimated with different metrics, like distance, energy, delay and throughput and achieved improved performance for the proposed method.

Originality/value

This paper presents an effectual multihop routing method, named IIWEHO technique in WSN. The developed IIWEHO algorithm is newly devised by incorporating EHO and IIWO approaches. The fitness measures, which include intra- and inter-distance, delay, link quality, delay and consumption of energy, are considered in this model. The proposed model simulates the WSN nodes, and CH selection is done by the LEACH protocol. The suitable CH is chosen for transmitting data through base station from the source to destination. Here, the routing system is devised by a developed optimization technique. The selection of multipath routing is carried out using the developed IIWEHO technique. The developed optimization approach selects the multipath depending on various multi-objective functions.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 February 2024

Shuangjiu Deng, Chang Li, Xing Han, Menghui Yu and Han Sun

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to…

Abstract

Purpose

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to quantitatively reveal the transient evolution law of the corrosion process of Co-12 cladding layer on QT600 surface.

Design/methodology/approach

In this paper, a three-dimensional numerical model of the corrosion process of Co-12 cladding layer by QT600 laser cladding is established. The interaction between pitting pits and corrosion medium is considered to reveal the transient evolution of ion concentration, electrode potential, pH and corrosion rate at different locations.

Findings

The calculation shows that the ion concentration in pitting pit changes Cl>Co2+>Na+, pH value decreases from top to bottom and corrosion rate at bottom is greater than that at top. The electrochemical corrosion test of Co-12 cladding layer was carried out. It is shown that the current density of QT600 increases by an order of magnitude compared to the Co-12 cladding layer, and the corrosion rate is 4.862 times higher than that of the cladding layer.

Originality/value

The results show that Co-12 cladding layer has great corrosion resistance, which provides an effective way for QT600 protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 June 2022

Himanshukumar R. Patel and Vipul A. Shah

In recent times, fuzzy logic is gaining more and more attention, and this is because of the capability of understanding the functioning of the system as per human knowledge-based…

Abstract

Purpose

In recent times, fuzzy logic is gaining more and more attention, and this is because of the capability of understanding the functioning of the system as per human knowledge-based system. The main contribution of the work is dynamically adapting the important parameters throughout the execution of the flower pollination algorithm (FPA) using concepts of fuzzy logic. By adapting the main parameters of the metaheuristics, the performance and accuracy of the metaheuristic have been improving in a varied range of applications.

Design/methodology/approach

The fuzzy logic-based parameter adaptation in the FPA is proposed. In addition, type-2 fuzzy logic is used to design fuzzy inference system for dynamic parameter adaptation in metaheuristics, which can help in eliminating uncertainty and hence offers an attractive improvement in dynamic parameter adaption in metaheuristic method, and, in reality, the effectiveness of the interval type-2 fuzzy inference system (IT2 FIS) has shown to provide improved results as matched to type-1 fuzzy inference system (T1 FIS) in some latest work.

Findings

One case study is considered for testing the proposed approach in a fault tolerant control problem without faults and with partial loss of effectiveness of main actuator fault with abrupt and incipient nature. For comparison between the type-1 fuzzy FPA and interval type-2 fuzzy FPA is presented using statistical analysis which validates the advantages of the interval type-2 fuzzy FPA. The statistical Z-test is presented for comparison of efficiency between two fuzzy variants of the FPA optimization method.

Originality/value

The main contribution of the work is a dynamical adaptation of the important parameters throughout the execution of the flower pollination optimization algorithm using concepts of type-2 fuzzy logic. By adapting the main parameters of the metaheuristics, the performance and accuracy of the metaheuristic have been improving in a varied range of applications.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 562