Search results

1 – 10 of 257
Article
Publication date: 2 June 2022

Himanshukumar R. Patel and Vipul A. Shah

In recent times, fuzzy logic is gaining more and more attention, and this is because of the capability of understanding the functioning of the system as per human knowledge-based…

Abstract

Purpose

In recent times, fuzzy logic is gaining more and more attention, and this is because of the capability of understanding the functioning of the system as per human knowledge-based system. The main contribution of the work is dynamically adapting the important parameters throughout the execution of the flower pollination algorithm (FPA) using concepts of fuzzy logic. By adapting the main parameters of the metaheuristics, the performance and accuracy of the metaheuristic have been improving in a varied range of applications.

Design/methodology/approach

The fuzzy logic-based parameter adaptation in the FPA is proposed. In addition, type-2 fuzzy logic is used to design fuzzy inference system for dynamic parameter adaptation in metaheuristics, which can help in eliminating uncertainty and hence offers an attractive improvement in dynamic parameter adaption in metaheuristic method, and, in reality, the effectiveness of the interval type-2 fuzzy inference system (IT2 FIS) has shown to provide improved results as matched to type-1 fuzzy inference system (T1 FIS) in some latest work.

Findings

One case study is considered for testing the proposed approach in a fault tolerant control problem without faults and with partial loss of effectiveness of main actuator fault with abrupt and incipient nature. For comparison between the type-1 fuzzy FPA and interval type-2 fuzzy FPA is presented using statistical analysis which validates the advantages of the interval type-2 fuzzy FPA. The statistical Z-test is presented for comparison of efficiency between two fuzzy variants of the FPA optimization method.

Originality/value

The main contribution of the work is a dynamical adaptation of the important parameters throughout the execution of the flower pollination optimization algorithm using concepts of type-2 fuzzy logic. By adapting the main parameters of the metaheuristics, the performance and accuracy of the metaheuristic have been improving in a varied range of applications.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 January 2022

Himanshukumar Rajendrabhai Patel

Fuzzy-based metaheuristic algorithm is used to optimize the fuzzy controllers for the nonlinear level control system subject to uncertainty specially in the main actuator that has…

Abstract

Purpose

Fuzzy-based metaheuristic algorithm is used to optimize the fuzzy controllers for the nonlinear level control system subject to uncertainty specially in the main actuator that has lost effectiveness (LOE). To optimize the fuzzy controller, type-1 harmonic search (HS) and interval type-2 (HS) will be used.

Design/methodology/approach

The type-1 and type-2 fuzzy-based HS algorithms are designed for optimization of fuzzy controllers for Fault-Tolerant Control (FTC) applications, and this research proposes a fuzzy-based HS metaheuristic method. The performance of a fuzzy logic-based HS algorithm applied to a nonlinear two-tank level control process with a main actuator that has lost effectiveness (LOE) and also the same controller will be tested on DC motor angular position control with and without noise.

Findings

The key contribution of this work is the discovery of the best approach for generating an optimal vector of values for the fuzzy controller's membership function optimization. This is done in order to improve the controller's performance, bringing the process value of the two-tank level control process closer to the target process value (set point). It is worth noting that the type-1 fuzzy controller that has been optimized is an interval type-2 fuzzy system, which can handle more uncertainty than a type-1 fuzzy system.

Originality/value

The type-1 and type-2 fuzzy-based HS algorithms are designed for optimization of fuzzy controllers for FTC applications, and this research proposes a fuzzy-based HS metaheuristic method. The performance of a fuzzy logic-based HS algorithm applied to a nonlinear two-tank level control process with a main actuator that has LOE will be tested on DC motor angular position control with noise. Two nonlinear uncertain processes are used to demonstrate the effectiveness of the proposed control scheme.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 July 2019

Chao Ren, Xiaoxing Liu and Zongqing Zhang

The purpose of this paper is to develop a risk evaluation method for the industrial network under high uncertain environment.

Abstract

Purpose

The purpose of this paper is to develop a risk evaluation method for the industrial network under high uncertain environment.

Design/methodology/approach

This paper introduces an extended safety and critical effect analysis (SCEA) method, which takes the weight of each industry in a network into risk assessment. Furthermore, expert experience and fuzzy logic are introduced for the evaluation of other parameters.

Findings

The proposed approach not only develops weight as the fifth parameter in quantitative risk assessment but also applies the interval type-2 fuzzy sets to depict the uncertainty in the risk evaluation process. The risk rating of each parameter excluding weight is determined by using the interval type-2 fuzzy numbers. The risk magnitude of each industry in the network is quantified by the extended SCEA method.

Research limitations/implications

There is less study in quantitative risk assessment in the industrial network. Additionally, fuzzy logic and expert experience are expressed in the presented approach. Moreover, different parameters can be determined by different weights in network risk assessment in the future study.

Originality/value

The extended SCEA method presents a new way to measure risk magnitude for industrial networks. The industrial network is developed in risk quantification by assessing weights of nodes as a parameter into the extended SCEA. The interval type-2 fuzzy number is introduced to model the uncertainty of risk assessment and to express the risk evaluation information from experts.

Details

Kybernetes, vol. 49 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 September 2021

Muhammet Öztürk and İbrahim Özkol

This study aims to propose, as the first time, the interval type-2 adaptive network-fuzzy inference system (ANFIS) structure, which is given better results compared to previously…

Abstract

Purpose

This study aims to propose, as the first time, the interval type-2 adaptive network-fuzzy inference system (ANFIS) structure, which is given better results compared to previously presented in the open literature. So, the ANFIS can be used effectively for training of interval type-2 fuzzy logic system (IT2FLS) parameters.

Design/methodology/approach

Karnik–Mendel algorithm (KMA) is modified to use in interval type-2 ANFIS. The modified Karnik–Mendel algorithm (M-KMA) is implemented to change the uncertain ANFIS parameters into known ones. In this way, the interval type-2 ANFIS removes uncertainties of IT2FLS. Therefore, the interval type-2 ANFIS is reduced to a simple one, i.e. less mathematical operation required. Only consequent parameters are trained, and the consequent parameters are chosen in the form of crisp.

Findings

By applying the mentioned procedure, it can be shown that interval type-2 ANFIS has generally better results compared to type-1 ANFIS. However, it was noticed that the worst results obtained in the case of interval type-2 ANFIS are equal to the best result obtained in the case of type-1 ANFIS. Therefore, users in this field can use this approach in solving nonlinear problems.

Practical implications

The interval type-2 ANFIS can be used as controller for highly nonlinear systems such as air vehicles.

Originality/value

As stated in the open literature, it is ineffective to use ANFIS for IT2FLS. In this study, the KMA is modified for IT2FLS, and it is seen that the ANFIS can be used effectively for IT2FLS.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 2006

P. Baguley, T. Page, V. Koliza and P. Maropoulos

Time to market is the essential aim of any new product introduction process. Performance measures are simple quantities that indicate the state of manufacturing organisations and…

1437

Abstract

Purpose

Time to market is the essential aim of any new product introduction process. Performance measures are simple quantities that indicate the state of manufacturing organisations and are used as the basis of decision‐making at this crucial early stage of the process. Fuzzy set theory is a method for using qualitative data and subjective opinion. Fuzzy sets have been used extensively in manufacturing for applications including control, decision‐making, and estimation. Type‐2 fuzzy sets are a novel extension of type‐1 fuzzy sets. Aims to examine this subject.

Design/methodology/approach

This research explores the increased use of type‐2 fuzzy sets in manufacturing. In particular, type‐2 fuzzy sets are used to model “the words that mean different things to different people”.

Findings

A model that can leverage design process knowledge and predict time to market from performance measures is a potentially valuable tool for decision making and continuous improvement. A number of data sources, such as process maps, from previous research into time to market in a high technology products company, are used to structure and build a type‐2 fuzzy logic model for the prediction of time to market.

Originality/value

This paper presents a demonstration of how the type‐2 fuzzy logic model works and provides directions for further research into the design process for time to market.

Details

Journal of Manufacturing Technology Management, vol. 17 no. 4
Type: Research Article
ISSN: 1741-038X

Keywords

Book part
Publication date: 5 October 2018

Long Chen and Wei Pan

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be…

Abstract

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be challenged with satisfying multiple criteria using vague information. Fuzzy multi-criteria decision-making (FMCDM) provides an innovative approach for addressing complex problems featuring diverse decision makers’ interests, conflicting objectives and numerous but uncertain bits of information. FMCDM has therefore been widely applied in construction management. With the increase in information complexity, extensions of fuzzy set (FS) theory have been generated and adopted to improve its capacity to address this complexity. Examples include hesitant FSs (HFSs), intuitionistic FSs (IFSs) and type-2 FSs (T2FSs). This chapter introduces commonly used FMCDM methods, examines their applications in construction management and discusses trends in future research and application. The chapter first introduces the MCDM process as well as FS theory and its three main extensions, namely, HFSs, IFSs and T2FSs. The chapter then explores the linkage between FS theory and its extensions and MCDM approaches. In total, 17 FMCDM methods are reviewed and two FMCDM methods (i.e. T2FS-TOPSIS and T2FS-PROMETHEE) are further improved based on the literature. These 19 FMCDM methods with their corresponding applications in construction management are discussed in a systematic manner. This review and development of FS theory and its extensions should help both researchers and practitioners better understand and handle information uncertainty in complex decision problems.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 12 February 2021

Himanshukumar R. Patel and Vipul A. Shah

The two-tank level control system is one of the real-world's second-order system (SOS) widely used as the process control in industries. It is normally operated under the…

Abstract

Purpose

The two-tank level control system is one of the real-world's second-order system (SOS) widely used as the process control in industries. It is normally operated under the Proportional integral and derivative (PID) feedback control loop. The conventional PID controller performance degrades significantly in the existence of modeling uncertainty, faults and process disturbances. To overcome these limitations, the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller (IT2TID) which is modified structure of PID controller.

Design/methodology/approach

In this paper, an optimization IT2TID controller design for the conical, noninteracting level control system is presented. Regarding to modern optimization context, the flower pollination algorithm (FPA), among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID's and IT2FPID's parameters. The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem. System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.

Findings

As the results, it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults. Additionally, statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.

Originality/value

Application of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults. Also, proposed method will compare with other method and statistical analysis will be presented.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 15 August 2018

Hatice Ercan Teksen and Ahmet Sermet Anagun

The control charts are used in many production areas because they give an idea about the quality characteristic(s) of a product. The control limits are calculated and the data are…

Abstract

Purpose

The control charts are used in many production areas because they give an idea about the quality characteristic(s) of a product. The control limits are calculated and the data are examined whether the quality characteristic(s) is/are within these limits. At this point, it may be confusing to comment, especially if it is slightly below or above the limit values. In order to overcome this situation, it is suitable to use fuzzy numbers instead of crisp numbers. The purpose of this paper is to demonstrate how to create control limits of X ¯ -R control charts for a specified data set of interval type-2 fuzzy sets.

Design/methodology/approach

There are methods in the literature, such as defuzzification, distance, ranking and likelihood, which may be applicable for interval type-2 fuzzy set. This study is the first that these methods are adapted to the X ¯ -R control charts. This methodology enables interval type-2 fuzzy sets to be used in X ¯ -R control charts.

Findings

It is demonstrated that the methods – such as defuzzification, distance, ranking and likelihood for interval type-2 fuzzy sets – could be applied to the X ¯ -R control charts. The fuzzy control charts created using the methods provide similar results in terms of in/out control situations. On the other hand, the sample points depicted on charts show similar pattern, even though the calculations are different based on their own structures. Finally, the control charts obtained with interval type-2 fuzzy sets and the control charts obtained with crisp numbers are compared.

Research limitations/implications

Based on the related literature, research works on interval type-2 fuzzy control charts seem to be very limited. This study shows the applicability of different interval type-2 fuzzy methods on X ¯ -R control charts. For the future study, different interval type-2 fuzzy methods may be considered for X ¯ -R control charts.

Originality/value

The unique contribution of this research to the relevant literature is that interval type-2 fuzzy numbers for quantitative control charts, such as X ¯ -R control charts, is used for the first time in this context. Since the research is the first adaptation of interval type-2 fuzzy sets on X ¯ -R control charts, the authors believe that this study will lead and encourage the people who work on this topic.

Details

Journal of Enterprise Information Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 9 January 2017

Vasile Georgescu

Type-2 fuzzy sets became attractive in practice because of their footprint of uncertainty that gives them more degrees of freedom. This paper aims to use genetic algorithms (GAs…

Abstract

Purpose

Type-2 fuzzy sets became attractive in practice because of their footprint of uncertainty that gives them more degrees of freedom. This paper aims to use genetic algorithms (GAs) to design an interval Type-2 fuzzy logic system (IT2FLS) for the purpose of predicting bankruptcy.

Design/methodology/approach

The shape of type-2 membership functions, the parameters giving their spread and location in the fuzzy partitions and the set of fuzzy rules are evolved at the same time by encoding all together into the chromosome representation. The enhanced Karnik–Mendel algorithms are used for the centroid type-reduction and defuzzification stage. The performance in predicting bankruptcy is evaluated by benchmarking IT2FLSs against type-1 FLSs. The experimental setup consists of evolving 100 configurations for both the T1FLS and IT2FLS and comparing their in-sample and out-of-sample average accuracy.

Findings

The experiments confirm that representing and capturing uncertainty with more degrees of freedom is an important advantage. It is this extra potential of IT2FLSs that allows them to outperform T1FLS, especially in terms of generalization capability.

Originality/value

The strategy followed in this paper is to train an IT2FLS from scratch rather than tuning the parameters of an existing T1FLS. Because this leads to solving a mixed integer optimization problem, the GA-based approach is specifically designed and uses genetic operators that are most suited for such a case: tournament selection, extended Laplace crossover and power mutation. Finally, the trained IT2FLS is applied to bankruptcy prediction, and its generalization capability is compared with related techniques.

Details

Kybernetes, vol. 46 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 September 2018

Muhammet Deveci, Ibrahim Zeki Akyurt and Selahattin Yavuz

The purpose of this paper is to present a new public bread factory location selection for Istanbul Metropolitan Municipality (IMM).

Abstract

Purpose

The purpose of this paper is to present a new public bread factory location selection for Istanbul Metropolitan Municipality (IMM).

Design/methodology/approach

A two-stage methodology is proposed to determine the location for the public bread factory facility. This framework is based on both geographic information systems (GIS) and multi-criteria decision-making (MCDM) techniques. The first stage of the methodology aims to decrease the number of possible alternative locations to simplify the selection activity by applying GIS; the second stage utilises interval type-2 fuzzy MCDM approach to exactly determine the public bread factory site location.

Findings

In this study, the authors present weighted normalised-based interval type-2 hesitant fuzzy and interval type-2 hesitant fuzzy sets (IT2HFSs)-based compressed proportional assessment (COPRAS) methods to overcome facility location selection problem for a fourth public bread factory in Istanbul.

Practical implications

The results show that the proposed approach is practical and can be employed by the bakery industry.

Originality/value

In this study, the authors present a two-stage methodology for public bread factory site selection. In the first stage, the number of alternatives is reduced by the GIS. In the second stage, an interval type-2 fuzzy set is implemented for the evaluation of public bakery factory site alternatives. A new integrated approach based on COPRAS method and weighted normalised with IT2HFSs is proposed.

Details

Journal of Enterprise Information Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-0398

Keywords

1 – 10 of 257