Search results

1 – 10 of 138
Article
Publication date: 26 July 2021

Yonghu Wang, Ray C. Chang and Wei Jiang

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to…

Abstract

Purpose

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to instantaneous high g-loads.

Design/methodology/approach

In the present study, the numerical approach of static aeroelasticity and two verified cases will be presented. The non-linear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling of artificial intelligence techniques based on post-flight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models.

Findings

The flight dynamic and static aeroelastic behaviors with instantaneous high g-load for the two transports will be analyzed and make a comparison study. The circumstance of turbulence encounter of the new twin-jet is much serious than that of four-jet transport aircraft, but the characteristic of stability and controllability for the new twin-jet is better than those of the four-jet transport aircraft; the new twin-jet transport is also shown to have very small aeroelastic effects. The static aeroelastic behaviors for the two different types can be assessed by using this method.

Practical implications

As the present study uses the flight data stored in a quick access recorder, an intrusive structural inspection of the post-flight can be avoided. A tentative conclusion is to prove that this method can be adapted to examine the static aeroelastic effects for transport aircraft of different weights, different sizes and different service years in tracking static aeroelastic behavior of existing different types of aircraft. In future research, one can consider to have more issues of other types of aircraft with high composite structure weight.

Originality/value

This method can be used to assist airlines to monitor the variations of flight dynamic and static aeroelastic behaviors as a complementary tool for management to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 January 2015

Chao Wang, Guofu Yin, Zhengyu Zhang, Shuiliang Wang, Tao Zhao, Yan Sun and Dangguo Yang

– The purpose of this paper is to introduce a novel method for developing static aeroelastic models based on rapid prototyping for wind tunnel testing.

Abstract

Purpose

The purpose of this paper is to introduce a novel method for developing static aeroelastic models based on rapid prototyping for wind tunnel testing.

Design/methodology/approach

A metal frame and resin covers are applied to a static aeroelastic wind tunnel model, which uses the difference of metal and resin to achieve desired stiffness distribution by the stiffness similarity principle. The metal frame is made by traditional machining, and resin covers are formed by stereolithgraphy. As demonstrated by wind tunnel testing and stiffness measurement, the novel method of design and fabrication of the static aeroelastic model based on stereolithgraphy is practical and feasible, and, compared with that of the traditional static elastic model, is prospective due to its lower costs and shorter period for its design and production, as well as avoiding additional stiffness caused by outer filler.

Findings

This method for developing static aeroelastic wind tunnel model with a metal frame and resin covers is feasible, especially for aeroelastic wind tunnel models with complex external aerodynamic shape, which could be accurately constructed based on rapid prototypes in a shorter time with a much lower cost. The developed static aeroelastic aircraft model with a high aspect ratio shows its stiffness distribution in agreement with the design goals, and it is kept in a good condition through the wind tunnel testing at a Mach number ranging from 0.4 to 0.65.

Research limitations/implications

The contact stiffness between the metal frame and resin covers is difficult to calculate accurately even by using finite element analysis; in addition, the manufacturing errors have some effects on the stiffness distribution of aeroelastic models, especially for small-size models.

Originality/value

The design, fabrication and ground testing of aircraft static aeroelastic models presented here provide accurate stiffness and shape stimulation in a cheaper and sooner way compared with that of traditional aeroelastic models. The ground stiffness measurement uses the photogrammetry, which can provide quick, and precise, evaluation of the actual stiffness distribution of a static aeroelastic model. This study, therefore, expands the applications of rapid prototyping on wind tunnel model fabrication, especially for the practical static aeroelastic wind tunnel tests.

Details

Rapid Prototyping Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 March 2023

Wei Jiang, Ray C. Chang, Shuqin Zhang and Shixin Zang

This study aims to present a diagnosis method to inspect the structure health for aging transport aircraft based on the postflight data in severe clear-air turbulence at transonic…

Abstract

Purpose

This study aims to present a diagnosis method to inspect the structure health for aging transport aircraft based on the postflight data in severe clear-air turbulence at transonic flight. The purpose of this method development is to assist certificate holder of aircraft maintenance factory as a complementary tool for the structural maintenance program to ensure that the transport aircraft fits airworthiness standards.

Design/methodology/approach

In this study, the numerical approach to analyze the characteristics of flight dynamic and static aeroelasticity for two four-jet transport aircraft will be presented. One of these two four-jet transport aircraft is an aging one. Another one is used to demonstrate the order of magnitude of the static aeroelastic behaviors. The nonlinear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling technique based on postflight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models.

Findings

Although the highest dynamic pressure of aging aircraft is lower, the highest absolute value of static aeroelastic effects response to the wing of aging aircraft is about 3.05 times larger than normal one; the magnitude variations of angles of attack are similar for both aircrafts; the highest absolute value of the static aeroelastic effects response to the empennage of aging aircraft is about 29.67 times larger than normal one in severe clear-air turbulence. The stabilizer of aging aircraft has irregular deviations with obvious jackscrew assembly problems, as found in this study.

Research limitations/implications

A lack of the measurement data of vertical wind speed sensor on board to verify the estimated values of damping term is one of the research limitations of this study. This research involved potential problem monitoring of structure health for transport aircraft in different weights, different sizes and different service years. In the future research, one can consider more structural integrity issues for other types of aircraft.

Practical implications

It can be realized from this study that the structure of aging transport aircraft may have potential safety threat. Therefore, when the airline managed aging transport aircraft, it ought to be conducted comprehensive and in-depth inspections to reduce such safety risks and establish a complete set of safety early warning measures to deal with the potential problem of aircraft aging.

Social implications

It can be realized that the structure of aging transport aircraft has potential safety threat. The airline managed aging transport aircraft; it should conduct comprehensive and in-depth inspections to reduce safety risks and establish a complete set of safety early warning measures.

Originality/value

This method can be used to assist airlines to monitor aging transport aircraft as a complementary tool of structural maintenance program to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 January 2019

Houda Bdeiwi, Andrea Ciarella, Andrew Peace and Marco Hahn

This paper aims to present a computational aeroelastic capability based on a fluid–structure interaction (FSI) methodology and validate it using the NASA Common Research Model…

Abstract

Purpose

This paper aims to present a computational aeroelastic capability based on a fluid–structure interaction (FSI) methodology and validate it using the NASA Common Research Model (CRM). Focus is placed on the effect of the wind tunnel model structural features on the static aeroelastic deformations.

Design/methodology/approach

The FSI methodology couples high-fidelity computational fluid dynamics to a simplified beam representation of the finite element model. Beam models of the detailed CRM wind tunnel model and a simplified CRM model are generated. The correlation between the numerical simulations and wind tunnel data for varying angles of attack is analysed and the influence of the model structure on the static aeroelastic deformation and aerodynamics is studied.

Findings

The FSI results follow closely the general trend of the experimental data, showing the importance of considering structural model deformations in the aerodynamic simulations. A thorough examination of the results reveals that it is not unequivocal that the fine details of the structural model are important in the aeroelastic predictions.

Research limitations/implications

The influence of some changes in structural deformation on transonic wing aerodynamics appears to be complex and non-linear in nature and should be subject to further investigations.

Originality/value

It is shown that the use of a beam model in the FSI approach provides a reliable alternative to the more costly coupling with the full FE model. It also highlights the non-necessity to develop precise, detailed structural models for accurate FSI simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2009

Fathi Jegarkandi Mohsen, Salezadeh Nobari Ali, Sabzehparvar Mahdi, Haddadpour Hassan and Tavakkoli Farhad

The purpose of this paper is to investigate the aeroelastic behavior of a supersonic flight vehicle flying at moderate angles of attack using global analytic nonlinear aerodynamic…

Abstract

Purpose

The purpose of this paper is to investigate the aeroelastic behavior of a supersonic flight vehicle flying at moderate angles of attack using global analytic nonlinear aerodynamic model.

Design/methodology/approach

Aeroelastic behavior of a supersonic flight vehicle flying at moderate angles of attack is considered, using nonlinear aerodynamics and linear elastodynamics and structural models. Normal force distribution coefficient over the length of the vehicle and pitching moment coefficient are the main aerodynamic parameters used in the aeroelastic modeling. It is very important to have closed form analytical relations for these coefficients in the model. They are generated using global nonlinear multivariate orthogonal modeling functions in this work. Angle of attack and length of the vehicle are selected as independent variables in the first step. Local variation of angle of attack is applied to the analytical model and due to its variation along the body of the vehicle, equations of motion are finalized. Mach number is added to the independent variables to investigate its role on instability of the vehicle and the modified model is compared with the previous one in the next step. Thrust effect on the aeroelastic stability of the vehicle is analyzed at final stage.

Findings

It is shown that for the vehicles having simple configurations and low length to diameter ratios flying at low angles of attack, assuming normal force distribution coefficient linear relative to α is reasonable. It is concluded that vehicle's velocity and thrust has not great effect on its divergence dynamic pressure.

Originality/value

Based on the constructed model, a simulation code is generated to investigate the aeroelastic behavior of the vehicle. The resultant code is verified by investigating the static aeroelastic stability margin of the vehicle presented in the references. Mach number effect on the aeroelastic behavior of the vehicle is considered using modified aerodynamic model and is compared with the results. Data base for identifying aerodynamic coefficients is conducted using CFD code.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 23 November 2018

Vladimir Kobelev

The purpose of this paper is to consider divergence of composite plate wings as well as slender wings with thin-walled cross-section of small-size airplanes. The main attention is…

Abstract

Purpose

The purpose of this paper is to consider divergence of composite plate wings as well as slender wings with thin-walled cross-section of small-size airplanes. The main attention is paid to establishing of closed-form mathematical solutions for models of wings with coupling effects. Simplified solutions for calculating the divergence speed of wings with different geometry are established.

Design/methodology/approach

The wings are modeled as anisotropic plate elements and thin-walled beams with closed cross-section. Two-dimensional plate-like models are applied to analysis and design problems for wings of large aspect ratio.

Findings

At first, the equations of elastic deformation for anisotropic slender, plate-like wing with the large aspect ratio are studied. The principal consideration is delivered to the coupled torsion-bending effects. The influence of anisotropic tailoring on the critical divergence speed of the wing is examined in closed form. At second, the method is extended to study the behavior of the large aspect ratio, anisotropic wing with box-like wings. The static equations of the wing with box-like profile are derived using the theory of anisotropic thin-walled beams with closed cross-section. The solutions for forward-swept wing with box-like profiles are given in analytical formulas. The formulas for critical divergence speed demonstrate the dependency upon cross-sectional shape characteristics and anisotropic properties of the wing.

Research limitations/implications

The following simplifications are used: the simplified aerodynamic theory for the wings of large aspect ratio was applied; the static aeroelastic instability is considered (divergence); according to standard component methodology, only the component of wing was modeled, but not the whole aircraft; the simplified theories (plate-lime model for flat section or thin-walled beam of closed-section) were applied; and a single parameter that defines the rotation of a stack of single layers over the face of the wing.

Practical implications

The simple, closed-form formulas for an estimation of critical static divergence are derived. The formulas are intended for use in designing of sport aircraft, gliders and small unmanned aircraft (drones). No complex analysis of airflow and advanced structural and aerodynamic models is necessary. The expression for chord length over the span of the wing allows for accounting a board class of wing shapes.

Social implications

The derived theory facilitates the use of composite materials for popular small-size aircraft, and particularly, for drones and gliders.

Originality/value

The closed-form solutions for thin-walled beams in steady gas flow are delivered in closed form. The explicit formulas for slender wings with variable chord and stiffness along the wing span are derived.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 October 2012

Emanuele Piccione, Giovanni Bernardini and Massimo Gennaretti

The purpose of this paper is to present the development and application of a numerical formulation for the structural dynamics and aeroelastic analysis of new generation…

3806

Abstract

Purpose

The purpose of this paper is to present the development and application of a numerical formulation for the structural dynamics and aeroelastic analysis of new generation helicopter and tiltrotor rotor blades. These are characterized by a curvilinear elastic axis, typically with the presence of tip sweep and anhedral angles.

Design/methodology/approach

The structural dynamics model implemented is based on nonlinear, flap‐lag‐torsion, rotating beam equations that are valid for slender, homogeneous, isotropic, non‐uniform, twisted blades undergoing moderate displacements. A second‐order approximation scheme for strain‐displacement is adopted. Aerodynamic contributions for aeroelastic applications are derived from sectional theories, with inclusion of wake inflow models to take into account three‐dimensional effects. The numerical integration is obtained through implementation within the COMSOL Multiphysics Finite‐Element‐Method (FEM) software code, considering the elastic axis of arbitrary curvilinear shape.

Findings

The computational tool developed is validated by comparisons with results available in the literature. These demonstrate the capability of the tool to accurately predict structural dynamics and aeroelastic behavior of curved‐axis rotor blades. In particular, the influence of sweep and anhedral angles at the blade tip is successfully captured.

Research limitations/implications

The numerical tool developed is limited to the analysis of isotropic blades, with a simple sectional aerodynamic modeling for aeroelastic applications. However, the flexibility of the process through which the proposed tool has been developed is such that a moderate effort is required for its extension to composite blades and more accurate aerodynamic loads predictions.

Practical implications

The proposed computational solver is a reliable tool for preliminary design and optimal design processes of helicopter and tiltrotor rotor blades.

Originality/value

Computational tools for rotors with advanced‐geometry blades are not commonly available. Therefore, the presentation of a successful way to implement structural dynamics/aeroelastic mathematical formulations for rotor blades with curvilinear elastic axis in highly flexible, multiphysics, FEM‐based, commercial software may be of interest for designers and researchers.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 June 2006

M. Vázquez, A. Dervieux and B. Koobus

To propose an integrated algorithm for aerodynamic shape optimization of aircraft wings under the effect of aeroelastic deformations at supersonic regime.

Abstract

Purpose

To propose an integrated algorithm for aerodynamic shape optimization of aircraft wings under the effect of aeroelastic deformations at supersonic regime.

Design/methodology/approach

A methodology is proposed in which a high‐fidelity aeroelastic analyser and an aerodynamic optimizer are loosely coupled. The shape optimizer is based on a “CAD‐free” approach and an exact gradient method with a single adjoint state. The global iterative process yields optimal shapes in the at‐rest condition (i.e. with the aeroelastic deformations substracted).

Findings

The methodology was tested under different conditions, taking into account a combined optimization goal: to reduce the sonic boom production, while preserving the aerodynamic performances of flexible wings. The objective function model contains both aerodynamic parameters and an acoustic term based on the sonic boom downwards emission.

Practical implications

This paper proposes a shape optimization methodology developed by researchers but aiming at the final strategic goal of creating tools that can be really integrated in design processes.

Originality/value

The paper presents an original loosely coupled method for the shape optimization of flexible wings in which recent and modern techniques are used at different levels of the global algorithm: the aerodynamic optimizer, the aeroelastic analyser, the shape parametrization and the objective function model.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 January 2017

Levent Ünlüsoy and Yavuz Yaman

The purpose of this paper is to analyse the effects of morphing on the aeroelastic behaviour of unmanned aerial vehicle (UAV) wings to make an emphasis on the required aeroelastic

Abstract

Purpose

The purpose of this paper is to analyse the effects of morphing on the aeroelastic behaviour of unmanned aerial vehicle (UAV) wings to make an emphasis on the required aeroelastic tailoring starting from the conceptual design of the morphing mechanisms.

Design/methodology/approach

In this study, flutter and divergence characteristics of a fully morphing wing design were discussed to show the dilapidating effect of morphing on the related parameters. The morphing wings were intended to achieve a high efficiency at different flight phases; thus, various morphing concepts were integrated into a UAV wing structure. Although it is considered beneficial to have the morphing capabilities to avoid the failure due to a possible wear out in flutter and divergence parameters; it is necessary to include the aeroelastic analyses at the early design phases. This study utilizes a combination of a reduced order structural model and Theodorsen unsteady aerodynamic model as primary analyses tools for flutter and divergence. The analyses were conducted by using an in-house developed pk-algorithm coupled with a commercial finite element analysis (FEA) tool. This approach yielded a fast solution capacity because of the state-space form used.

Findings

Analyses conducted showed that transition between take-off, climb, cruise and loiter phases yield a change in the flutter and divergence speeds as high as 138 and 305 per cent, respectively.

Practical implications

The research showed that an extensive aeroelastic investigation was required for morphing wing designs to achieve a failure safe design.

Originality/value

The research intends to highlight the possible deteriorating effects on structural design of morphing UAV wings by focusing on the aeroelastic characteristics. In addition to that, fundamental morphing concepts are compared in terms of the order of magnitude of their deteriorating effects.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 January 2015

Luca Riccobene and Sergio Ricci

The purpose of this paper is to present a formulation that couples equivalent plate and beam models for aircraft structures analysis, suitable in conceptual design in which fast…

Abstract

Purpose

The purpose of this paper is to present a formulation that couples equivalent plate and beam models for aircraft structures analysis, suitable in conceptual design in which fast model generation and efficient analysis capability are required.

Design/methodology/approach

Assembling the complete model with common techniques such as Lagrange multipliers or penalty function method would require a solver capable of handling the combined set of linear equation. The alternative approach proposed here is based on a static reduction of the beam model at specified connection points and the subsequent “embedding” into the equivalent plate model using a coordinate transformation, translating physical dfs in Ritz coordinates, i.e. polynomial coefficients. Displacements and forces on beam elements are recovered with the inverse transformation once the solution is computed.

Findings

An aeroelastic trim analysis on a Transonic CRuiser (TCR) civil aircraft conceptual model validates the hybrid model: as the TCR features a slender flexible fuselage and a wide root chord wing, the capability to reduce the beam model for the fuselage at more than one connection point improved aeroelastic corrections to steady longitudinal aerodynamic derivatives.

Originality/value

Although the equivalent model proposed is simpler than others found in literature, it offers automatic mesh generation capabilities, and it is fully integrated into an aeroelastic framework. The hybrid model represents an enhancement allowing both dynamical and static analyses.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 138