Search results

1 – 10 of over 42000
Article
Publication date: 5 February 2018

César Pacheco, Helcio R.B. Orlande, Marcelo Colaco and George S. Dulikravich

The purpose of this paper is to apply the Steady State Kalman Filter for temperature measurements of tissues via magnetic resonance thermometry. Instead of using classical direct…

Abstract

Purpose

The purpose of this paper is to apply the Steady State Kalman Filter for temperature measurements of tissues via magnetic resonance thermometry. Instead of using classical direct inversion, a methodology is proposed that couples the magnetic resonance thermometry with the bioheat transfer problem and the local temperatures can be identified through the solution of a state estimation problem.

Design/methodology/approach

Heat transfer in the tissues is given by Pennes’ bioheat transfer model, while the Proton Resonance Frequency (PRF)-Shift technique is used for the magnetic resonance thermometry. The problem of measuring the transient temperature field of tissues is recast as a state estimation problem and is solved through the Steady-State Kalman filter. Noisy synthetic measurements are used for testing the proposed methodology.

Findings

The proposed approach is more accurate for recovering the local transient temperatures from the noisy PRF-Shift measurements than the direct data inversion. The methodology used here can be applied in real time due to the reduced computational cost. Idealized test cases are examined that include the actual geometry of a forearm.

Research limitations/implications

The solution of the state estimation problem recovers the temperature variations in the region more accurately than the direct inversion. Besides that, the estimation of the temperature field in the region was possible with the solution of the state estimation problem via the Steady-State Kalman filter, but not with the direct inversion.

Practical implications

The recursive equations of the Steady-State Kalman filter can be calculated in computational times smaller than the supposed physical times, thus demonstrating that the present approach can be used for real-time applications, such as in control of the heating source in the hyperthermia treatment of cancer.

Originality/value

The original and novel contributions of the manuscript include: formulation of the PRF-Shift thermometry as a state estimation problem, which results in reduced uncertainties of the temperature variation as compared to the classical direct inversion; estimation of the actual temperature in the region with the solution of the state estimation problem, which is not possible with the direct inversion that is limited to the identification of the temperature variation; solution of the state estimation problem with the Steady-State Kalman filter, which allows for fast computations and real-time calculations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2022

Felipe Sant'Anna Nunes, Helcio R.B. Orlande and Andrzej J. Nowak

This study deals with the computational simulation and inverse analysis of the cooling treatment of the hypoxic-ischemic encephalopathy in neonates. A reduced-order model is…

Abstract

Purpose

This study deals with the computational simulation and inverse analysis of the cooling treatment of the hypoxic-ischemic encephalopathy in neonates. A reduced-order model is implemented for real-time monitoring of the internal body temperatures. The purpose of this study is to sequentially estimate the transient temperatures of the brain and other body regions with reduced uncertainties.

Design/methodology/approach

Pennes’ model was applied in each body element, and Fiala’s blood pool concept was used for the solution of the forward bioheat transfer problem. A state estimation problem was solved with the Sampling Importance Resampling (SIR) algorithm of the particle filter method.

Findings

The particle filter method was stable and accurate for the estimation of the internal body temperatures, even in situations involving large modeling and measurement uncertainties.

Research limitations/implications

The proposed reduced-order model was verified with the results of a high-fidelity model available in the literature. Validation of the proposed model and of the solution of the state estimation problem shall be pursued in the future.

Practical implications

The solution of the state estimation problem with the reduced-order model presented in this paper has great potential to perform as an observer of the brain temperature of neonates, for the analysis and control of the systemic cooling treatment of neonatal hypoxic-ischemic encephalopathy.

Social implications

The main treatment for hypoxic-ischemic encephalopathy in neonates is the cooling of affected regions. Accurate and fast models might allow the development of individualized protocols, as well as control strategies for the cooling treatment.

Originality/value

This paper presents the application of the SIR algorithm for the solution of a state problem during the systemic cooling of a neonate for the treatment of the hypoxic-ischemic encephalopathy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 May 2022

Zhonglai Tian, Hongtai Cheng, Zhenjun Du, Zongbei Jiang and Yeping Wang

The purpose of this paper is to estimate the contact-consistent object poses during contact-rich manipulation tasks based only on visual sensors.

Abstract

Purpose

The purpose of this paper is to estimate the contact-consistent object poses during contact-rich manipulation tasks based only on visual sensors.

Design/methodology/approach

The method follows a four-step procedure. Initially, the raw object poses are retrieved using the available object pose estimation method and filtered using Kalman filter with nominal model; second, a group of particles are randomly generated for each pose and evaluated the corresponding object contact state using the contact simulation software. A probability guided particle averaging method is proposed to balance the accuracy and safety issues; third, the independently estimated contact states are fused in a hidden Markov model to remove the abnormal contact state observations; finally, the object poses are refined by averaging the contact state consistent particles.

Findings

The experiments are performed to evaluate the effectiveness of the proposed methods. The results show that the method can achieve smooth and accurate pose estimation results and the estimated contact states are consistent with ground truth.

Originality/value

This paper proposes a method to obtain contact-consistent poses and contact states of objects using only visual sensors. The method tries to recover the true contact state from inaccurate visual information by fusing contact simulations results and contact consistency assumptions. The method can be used to extract pose and contact information from object manipulation tasks by just observing the demonstration, which can provide a new way for the robot to learn complex manipulation tasks.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 June 2022

Steve B. Diniz and César C. Pacheco

The purpose of this paper is to identify freezing in pitot tubes at real-time, by means of the estimated heat transfer coefficient (HTC) at the tip of the probe. The prompt…

Abstract

Purpose

The purpose of this paper is to identify freezing in pitot tubes at real-time, by means of the estimated heat transfer coefficient (HTC) at the tip of the probe. The prompt identification of such freezing is paramount to activate and control mechanisms for ice removal, which in turn are essential for the safety of the aircraft and its passengers.

Design/methodology/approach

The proposed problem is solved by means of an inverse analysis, performed within the Bayesian approach of inverse problems, with temperature measurements assumed available along the pitot probe over time. A heat conduction model is used for describing the average temperature of the pitot tube, which is then rewritten in the form of a state estimation problem. The model is linear and time invariant, so that the inverse problem can be solved using the steady-state Kalman filter (SSKF), a computationally efficient algorithm.

Findings

The results show that the SSKF is fully capable of recovering the HTC information from the temperature measurements. Any variation of the HTC – either smooth or discontinuous – is promptly detected with high accuracy. Computational effort is significantly lower than the physical time, so that the proposed methodology is fully capable of estimating the HTC at real-time.

Originality/value

The methodology herein solves the proposed problem not only by estimating the HTC accurately but also doing so with a very small computational effort, so that real-time estimation and freezing control become possible. To the best of the authors’ knowledge, no likewise publications have been found so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2013

M. Majeed and Indra Narayan Kar

The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics.

Abstract

Purpose

The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics.

Design/methodology/approach

The introduced adaptive filter scheme is composed of two parallel UKFs. At every time‐step, the master UKF estimates the states and parameters using the noise covariance obtained by the slave UKF, while the slave UKF estimates the noise covariance using the innovations generated by the master UKF. This real time innovation‐based adaptive unscented Kalman filter (UKF) is used to estimate aerodynamic parameters of aircraft in uncertain environment where noise characteristics are drastically changing.

Findings

The investigations are initially made on simulated flight data with moderate to high level of process noise and it is shown that all the aerodynamic parameter estimates are accurate. Results are analyzed based on Monte Carlo simulation with 4000 realizations. The efficacy of adaptive UKF in comparison with the other standard Kalman filters on the estimation of accurate flight stability and control derivatives from flight test data in the presence of noise, are also evaluated. It is found that adaptive UKF successfully attains better aerodynamic parameter estimation under the same condition of process noise intensity changes.

Research limitations/implications

The presence of process noise complicates parameter estimation severely. Since the non‐measurable process noise makes the system stochastic, consequently, it requires a suitable state estimator to propagate the states for online estimation of aircraft aerodynamic parameters from flight data.

Originality/value

This is the first paper highlighting the process noise intensity change on real time estimation of flight stability and control parameters using adaptive unscented Kalman filter.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 6 March 2017

Bernard Lamien, Leonardo A.B. Varon, Helcio R.B. Orlande and Guillermo E. Elicabe

The purpose of this paper is to focus on applications related to the hyperthermia treatment of cancer, with heating imposed either by a laser in the near-infrared range or by…

Abstract

Purpose

The purpose of this paper is to focus on applications related to the hyperthermia treatment of cancer, with heating imposed either by a laser in the near-infrared range or by radiofrequency waves. The particle filter algorithms are compared in terms of computational time and solution accuracy.

Design/methodology/approach

The authors extend the analyses performed in their previous works to compare three different algorithms of the particle filter, as applied to the hyperthermia treatment of cancer. The particle filters examined here are the sampling importance resampling (SIR) algorithm, the auxiliary sampling importance resampling (ASIR) algorithm and Liu & West’s algorithm.

Findings

Liu & West’s algorithm resulted in the largest computational times. On the other hand, this filter was shown to be capable of dealing with very large uncertainties. In fact, besides the uncertainties in the model parameters, Gaussian noises, similar to those used for the SIR and ASIR filters, were added to the evolution models for the application of Liu & West’s filter. For the three filters, the estimated temperatures were in excellent agreement with the exact ones.

Practical implications

This work may help medical doctors in the future to prescribe treatment protocols and also opens the possibility of devising control strategies for the hyperthermia treatment of cancer.

Originality/value

The natural solution to couple the uncertain results from numerical simulations with the measurements that contain uncertainties, aiming at the better prediction of the temperature field of the tissues inside the body, is to formulate the problem in terms of state estimation, as performed in this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 December 2021

Jiaolong Wang, Chengxi Zhang and Jin Wu

This paper aims to propose a general and rigorous study on the propagation property of invariant errors for the model conversion of state estimation problems with discrete group…

Abstract

Purpose

This paper aims to propose a general and rigorous study on the propagation property of invariant errors for the model conversion of state estimation problems with discrete group affine systems.

Design/methodology/approach

The evolution and operation properties of error propagation model of discrete group affine physical systems are investigated in detail. The general expressions of the propagation properties are proposed together with the rigorous proof and analysis which provide a deeper insight and are beneficial to the control and estimation of discrete group affine systems.

Findings

The investigation on the state independency and log-linearity of invariant errors for discrete group affine systems are presented in this work, and it is pivotal for the convergence and stability of estimation and control of physical systems in engineering practice. The general expressions of the propagation properties are proposed together with the rigorous proof and analysis.

Practical implications

An example application to the attitude dynamics of a rigid body together with the attitude estimation problem is used to illustrate the theoretical results.

Originality/value

The mathematical proof and analysis of the state independency and log-linearity property are the unique and original contributions of this work.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 September 2023

Yue Qiao, Wang Wei, Yunxiang Li, Shengzui Xu, Lang Wei, Xu Hao and Re Xia

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the…

147

Abstract

Purpose

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the transition zone between land and water.

Design/methodology/approach

Based on the dynamics model, the authors selected the appropriate state variables to construct the state space model of the robot and estimated the feedback state of the robot through the maximum a posteriori probability estimation. The nonlinear predictive model controller of the robot is constructed by local linearization of the model to perform closed-loop control on the overall motion of the robot. For the control problem of the terminal trajectory, using the neural rhythmic movement theory in bionics to construct a robot central pattern generator (CPG) for real-time generation of terminal trajectory.

Findings

In this paper, the motion state of WFF-AmphiRobot is estimated, and a model-based overall motion controller for the robot and an end-effector controller based on neural rhythm control are constructed. The effectiveness of the controller and motion control algorithm is verified by simulation and physical prototype motion experiments on land and underwater, and the robot can ideally complete the desired behavior.

Originality/value

The paper designed a controller for WFF-AmphiRobot. First, when constructing the robot state estimator in this paper, the robot dynamics model is introduced as the a priori estimation model, and the error compensation of the a priori model is performed by the method of maximum a posteriori probability estimation, which improves the accuracy of the state estimator. Second, for the underwater oscillation motion characteristics of the flipper, the Hopf oscillator is used as the basis, and the flipper fluctuation equation is modified and improved by the CPG signal is adapted to the flipper oscillation demand. The controller effectively controls the position error and heading angle error within the desired range during the movement of the WFF-AmphiRobot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 October 2018

Teng Long, En Li, Junfeng Fan, Lei Yang and Zize Liang

This paper aims to design a tip state estimation method for a hybrid-structured flexible manipulator (HSFM) with one rotating joint and one telescopic joint in the vertical plane.

Abstract

Purpose

This paper aims to design a tip state estimation method for a hybrid-structured flexible manipulator (HSFM) with one rotating joint and one telescopic joint in the vertical plane.

Design/methodology/approach

The HSFM model is decomposed into a static deflection model and a vibration model. The sliding discrete Fourier transform (SDFT) is used to filter the high frequency noise and obtain main vibration components to represent the vibration model. Then, a novel fuzzy logic adaptive Kalman filter (FLAKF) is designed to estimate the state of a vibrational equilibrium position. The complete tip state of the HSFM is obtained by superimposing the FLAKF filter results with the SDFT vibration analysis results.

Findings

Both the simulation results and physical experimental results verify the effectiveness of the proposed tip state estimation method. The vibration analysis based on SDFT is used to represent the vibration model and reduce the computational complexity in the process of solving differential equation. The proposed FLAKF can effectively increase the stability and robustness of the estimator.

Originality/value

In this paper, the tip state estimation problem of the HSFM in vertical plane is first proposed. The effect of gravity on the HSFM is considered by the static deflection model. A precise tip state estimator is designed by a closed loop SDFT and a novel FLAKF, which can provide an accurate feedback for the vibration control controller and make an accurate evaluation of the control effect.

Article
Publication date: 4 January 2016

Shashi Poddar, Sajjad Hussain, Sanketh Ailneni, Vipan Kumar and Amod Kumar

The purpose of this paper is to solve the problem of tuning of EKF parameters (process and measurement noise co-variance matrices) designed for attitude estimation using Global…

Abstract

Purpose

The purpose of this paper is to solve the problem of tuning of EKF parameters (process and measurement noise co-variance matrices) designed for attitude estimation using Global Positioning System (GPS) aided inertial sensors by employing a Human Opinion Dynamics (HOD)-based optimization technique and modifying the technique using maximum likelihood estimators and study its performance as compared to Particle Swarm Optimization (PSO) and manual tuning.

Design/methodology/approach

A model for the determination of attitude of flight vehicles using inertial sensors and GPS measurement is designed and experiments are carried out to collect raw sensor and reference data. An HOD-based model is utilized to estimate the optimized process and measurement noise co-variance matrix. Added to it, few modifications are proposed in the HOD model by utilizing maximum likelihood estimator and finally the results obtained by the proposed schemes analysed.

Findings

Analysis of the results shows that utilization of evolutionary algorithms for tuning is a significant improvement over manual tuning and both HOD and PSO-based methods are able to achieve the same level of accuracy. However, the HOD methods show better convergence and is easier to implement in terms of tuning parameters. Also, utilization of maximum likelihood estimator shows better search during initial iterations which increases the robustness of the algorithm.

Originality/value

The paper is unique in its sense that it utilizes a HOD-based model to solve tuning problem of EKF for attitude estimation.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of over 42000