Search results

1 – 10 of over 7000
Book part
Publication date: 11 August 2016

Mohamed Rochdi Keffala

The major objective of this study is to inspect the differences in the effect of derivatives on the stability between banks from emerging countries and those from recently…

Abstract

The major objective of this study is to inspect the differences in the effect of derivatives on the stability between banks from emerging countries and those from recently developed countries.

According to the repercussions of the recent financial crisis, we divide the whole period into normal period “the pre-crisis period,” 2003–2006, and turbulent period “the crisis & post-crisis period,” 2007–2011. We use the Generalized Methods of Moments (GMM) estimator technique developed by Blundell and Bond (1998) to estimate our regressions.

Our main conclusions show that, in general, using derivatives by banks from emerging countries deteriorates their stability especially during the turbulent period, whereas, using derivatives do not weaken the stability of banks from recently developed countries. We deduce that banks from emerging countries are more destabilized by using derivatives than banks from recently developed countries.

Details

The Spread of Financial Sophistication through Emerging Markets Worldwide
Type: Book
ISBN: 978-1-78635-155-5

Keywords

Article
Publication date: 29 April 2014

Zdobyslaw Goraj

The present study aimed to demonstrate different computational models, data and stability results obtained in a wide number of projects of various aircrafts such as unmanned…

Abstract

Purpose

The present study aimed to demonstrate different computational models, data and stability results obtained in a wide number of projects of various aircrafts such as unmanned aerial vehicles (UAVs), general aviation and big passenger flying airliners in blended wing body (BWB) configurations. Many details of modeling and computing are shown for unconventional configurations, namely, for a BWB aircraft and for tailless UAVs.

Design/methodology/approach

Mathematical models for analysis of static and dynamic stability were built and investigated based on equations of motion in the linearized form using the so-called state variable model for a steady-state disturbed, generally asymmetric, flight.

Findings

Flight dynamics models and associated computational procedures appeared to be useful, both in a preliminary design phase and during the final assessment of the configuration at flight tests. It was also found that the difference between thresholds for static and dynamic stability conditions was equal to 9 per cent of mean aerodynamic chord (MAC) in the case of BWB and 3 per cent of MAC in the case of tailless UAVs.

Practical implications

Many useful information about aircraft dynamics can be easily obtained from computational analyses including time to half/double and periods of oscillation, undamped frequencies, damping ratio and many others. Stability analysis of different unconventional configurations will be easier and faster if an access to such configurations is available.

Originality/value

This paper presents a very efficient method of assessment of the designing parameters, especially in an early stage of the design process. In open literature, there are a great number of datasets for classical configurations, but it is hard to find anything for passenger BWB and tailless UAVs. Stability computations are performed based on equations of motion derived in the stability frame of the reference fixed with one-quarter of MAC. It can be considered as an original, not typical but a very practical approach because values of stability and control derivatives do not change even if the centre of gravity is travelling.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 16 November 2018

Vittorio Cipolla, Karim Abu Salem and Filippo Bachi

The present paper aims to assess the reliability and the limitations of analysing flight stability of a box-wing aircraft configuration known as PrandtlPlane by means of methods…

Abstract

Purpose

The present paper aims to assess the reliability and the limitations of analysing flight stability of a box-wing aircraft configuration known as PrandtlPlane by means of methods conceived for conventional aircraft and well known in the literature.

Design/methodology/approach

Results obtained by applying vortex lattice methods to PrandtlPlane configuration, validated previously with wind tunnel tests, are compared to the output of a “Roskam-like” method, here defined to model the PrandtlPlane features.

Findings

The comparisons have shown that the “Roskam-like” model gives accurate predictions for both the longitudinal stability margin and dihedral effect, whereas the directional stability is always overestimated.

Research limitations/implications

The method here proposed and related achievements are valid only for subsonic conditions. The poor reliability related to lateral-directional derivatives estimations may be improved implementing different models known from the literature.

Practical implications

The possibility of applying a faster method as the “Roskam-like” one here presented has two main implications: it allows to implement faster analyses in the conceptual and preliminary design of PrandtlPlane, providing also a tool for the definition of the design space in case of optimization approaches and it allows to implement a scaling procedure, to study families of PrandtlPlanes or different aircraft categories.

Social implications

This paper is part of the activities carried out during the PARSIFAL project, which aims to demonstrate that the introduction of PrandtlPlane as air transport mean can fuel consumption and noise impact, providing a sustainable answer to the growing air passenger demand envisaged for the next decades.

Originality/value

The originality of this paper lies in the attempt of adopting analysis method conceived for conventional airplanes for the analysis of a novel configuration. The value of the work is represented by the knowledge concerning experimental results and design methods on the PrandtlPlane configuration, here made available to define a new analysis tool.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 October 2018

Marcin Figat

This paper aims to present the results of aerodynamic calculation of the aircraft in tandem wing configuration called VTOL. A presented vehicle combines the capabilities of the…

Abstract

Purpose

This paper aims to present the results of aerodynamic calculation of the aircraft in tandem wing configuration called VTOL. A presented vehicle combines the capabilities of the classic aircraft and helicopters. The aircraft is equipped with two pairs of tilt-rotors mounted on the tips of the front and the rear wing. The main goal of the presented research was to find the aerodynamic impact of both pairs of tilt-rotors on aerodynamic coefficients of the aircraft. Moreover, the rotors impact on the static stability of the aircraft was investigated too.

Design/methodology/approach

The CFD analysis was made for the complete aircraft in the tandem wing configuration. The computation was performed for the model of aircraft which was equipped with the four sub-models of the front and rear rotors. They were modeled as the actuator discs. This method allows for computing the aerodynamic impact of rotating components on the aircraft body. All aerodynamic analysis was made by the MGAERO software. The numerical code of the software was based on the Euler flow model. The used numerical method allows for the quick computation of very complex model of aircraft with a satisfied accuracy.

Findings

The result obtained by computation includes the aerodynamic coefficients which described the impact of the tilt rotors on the aircraft aerodynamic. The influence of the angle of attack, sideslip angle and the change of rotor tilt angle was investigated. Evaluation of the influence was made by the stability margin analysis and the selected stability derivatives computation.

Practical implications

Presented results could be very useful in the computation of dynamic stability of unconventional aircraft. Moreover, results could be helpful during designing the aircraft in the tandem wing configuration.

Originality/value

This paper presents the aerodynamic analysis of the unconventional configuration of the aircraft which combines the tandem wing feature with the tilt-rotor advantages. The impact of disturbance generated by the front and rear rotors on the flow around the aircraft was investigated. Moreover, the impact of rotors configuration on the aircraft static stability was found too.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2017

Mahmood Khalid and Khalid A. Juhany

The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on…

Abstract

Purpose

The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on its plain flat surface. Numerical simulation would require very large meshes to resolve flows at subscale level and the experimental evaluations would be equally difficult, requiring expensive measurement facilities with challenging procedures to secure such vehicles in confined test sections to obtain satisfactory wind on and wind off oscillations.

Design/methodology/approach

The design method uses appropriate pressure fields using small disturbance theory, which, in turn, is perturbed using the unsteady shock expansion theory to recover suitable expressions for the dynamic stability behaviour.

Findings

It was observed that the dynamic stability of the standard half-cone-type wave riders with flat upper surfaces deteriorates with the axis position measured from the pointed apex reaching a minimum at around x/co = 0.666. The half-cone wave rider with flat upper surfaces is dynamically less stable than a pure cone.

Research limitations/implications

The method is typically less accurate when the similarity parameter Mθ ≤ 1 = 1 or if the angle of attack is not small.

Practical implications

With renewed interest in hypersonic, future hypersonically would be designed as fast lifting bodies whose shapes would be close to the configurations of hypersonic wave riders, especially if they are designed to operate at upper atmosphere altitudes.

Originality/value

The analytic approach outlined in this paper for the evaluation of dynamic and static stability derivatives is original, drawing from the strengths of the small disturbance theory and shock expansion techniques. The method is particularly important, as there are no reported theoretical, numerical or experimental results in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 September 2018

Miodrag Milenković-Babić

This paper aims to present the new information about propeller thrust force contribution to airplane longitudinal stability analysis.

Abstract

Purpose

This paper aims to present the new information about propeller thrust force contribution to airplane longitudinal stability analysis.

Design/methodology/approach

The method presented in this paper is empirical, shows how propeller thrust force derivative can be obtained and gives some additional information about misinterpretation of the propeller thrust effects that are present in the current literature.

Findings

New information about propeller thrust force contribution to airplane longitudinal stability analysis has been presented. This information should enable more precise insight in aircraft stability analysis and better understanding of the physical process that occurs during maneuver flight.

Practical implications

The information presented in this paper is new and specific to the propeller aircraft configuration. The methods used here are standard procedure to evaluating propeller thrust force derivative.

Originality/value

The information in this paper presents theoretical results. The method for calculating thrust force contribution to the airplane longitudinal stability is given depending on the propeller type and should enable good engineering results.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 September 2023

Wei Jiang, Ray C. Chang, Ning Yang and Ying Xu

The purpose of this paper is to present a comparative study of flight circumstances, dynamic stability characteristics and controllability for two transport aircraft in severe…

Abstract

Purpose

The purpose of this paper is to present a comparative study of flight circumstances, dynamic stability characteristics and controllability for two transport aircraft in severe atmospheric turbulence at transonic cruise flight for the purpose to obtain the prevention concepts of injuries to passengers and crew members for pilot training in International Air Transport Association (IATA) – Loss of Control In-flight (LOC-I) program.

Design/methodology/approach

A twin-jet and a four-jet transport aircraft encountering severe atmospheric turbulence are the study cases for this paper. The nonlinear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling technique based on the flight data of flight data recorder. This method can be adopted to examine the influence of horizontal wind shear and crosswind on loss of control, dynamic stability characteristics and controllability for transport aircraft in different weights and different sizes in tracking aviation safety of existing different types of aircraft.

Findings

The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiate the sudden plunging motion during the turbulence encounter. The roll rate will increase the oscillatory rolling motion during plunging motion, if the rolling damping is insufficient. The drop-off altitude will be enlarged by the oscillatory rolling motion during the sudden plunging motion.

Research limitations/implications

A lack of the measurement data of vertical wind speed sensor on board to verify the estimated values of damping term is one of the research limitations for this study. The fact or condition of being severe in sudden plunging motion can be judged through the analysis of oscillatory derivatives with both dynamic stability and damping terms.

Practical implications

The roll rate will increase the oscillatory rolling motion during plunging motion, if the rolling damping is insufficient. The drop-off altitude will be enlarged by the oscillatory rolling motion during the sudden plunging motion. The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiated the sudden plunging motion during the turbulence encounter. If the drift angle is large, to turn off the autopilot of yaw control first and stabilize the rudder by the pedal. When passing through the atmosphere turbulence area, the pilots do not need to amend the heading angle urgently.

Social implications

The flight safety prevention in avoidance of injuries for passengers and cabin crews is essential for the airlines. The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiated the sudden plunging motion during the turbulence encounter.

Originality/value

The flight safety prevention in avoidance of injuries for passengers and cabin crews is essential. The present assessment method is an innovation to examine the loss of control problems of aviation safety and promote the understanding of aerodynamic responses of the jet transport aircraft. It is expected to provide a valuable lecture for the international training courses for IATA – LOC-I program after this paper is being published.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2023

Wei Jiang, Ray C. Chang, Shuqin Zhang and Shixin Zang

This study aims to present a diagnosis method to inspect the structure health for aging transport aircraft based on the postflight data in severe clear-air turbulence at transonic…

Abstract

Purpose

This study aims to present a diagnosis method to inspect the structure health for aging transport aircraft based on the postflight data in severe clear-air turbulence at transonic flight. The purpose of this method development is to assist certificate holder of aircraft maintenance factory as a complementary tool for the structural maintenance program to ensure that the transport aircraft fits airworthiness standards.

Design/methodology/approach

In this study, the numerical approach to analyze the characteristics of flight dynamic and static aeroelasticity for two four-jet transport aircraft will be presented. One of these two four-jet transport aircraft is an aging one. Another one is used to demonstrate the order of magnitude of the static aeroelastic behaviors. The nonlinear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling technique based on postflight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models.

Findings

Although the highest dynamic pressure of aging aircraft is lower, the highest absolute value of static aeroelastic effects response to the wing of aging aircraft is about 3.05 times larger than normal one; the magnitude variations of angles of attack are similar for both aircrafts; the highest absolute value of the static aeroelastic effects response to the empennage of aging aircraft is about 29.67 times larger than normal one in severe clear-air turbulence. The stabilizer of aging aircraft has irregular deviations with obvious jackscrew assembly problems, as found in this study.

Research limitations/implications

A lack of the measurement data of vertical wind speed sensor on board to verify the estimated values of damping term is one of the research limitations of this study. This research involved potential problem monitoring of structure health for transport aircraft in different weights, different sizes and different service years. In the future research, one can consider more structural integrity issues for other types of aircraft.

Practical implications

It can be realized from this study that the structure of aging transport aircraft may have potential safety threat. Therefore, when the airline managed aging transport aircraft, it ought to be conducted comprehensive and in-depth inspections to reduce such safety risks and establish a complete set of safety early warning measures to deal with the potential problem of aircraft aging.

Social implications

It can be realized that the structure of aging transport aircraft has potential safety threat. The airline managed aging transport aircraft; it should conduct comprehensive and in-depth inspections to reduce safety risks and establish a complete set of safety early warning measures.

Originality/value

This method can be used to assist airlines to monitor aging transport aircraft as a complementary tool of structural maintenance program to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 July 2021

Yonghu Wang, Ray C. Chang and Wei Jiang

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to…

Abstract

Purpose

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to instantaneous high g-loads.

Design/methodology/approach

In the present study, the numerical approach of static aeroelasticity and two verified cases will be presented. The non-linear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling of artificial intelligence techniques based on post-flight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models.

Findings

The flight dynamic and static aeroelastic behaviors with instantaneous high g-load for the two transports will be analyzed and make a comparison study. The circumstance of turbulence encounter of the new twin-jet is much serious than that of four-jet transport aircraft, but the characteristic of stability and controllability for the new twin-jet is better than those of the four-jet transport aircraft; the new twin-jet transport is also shown to have very small aeroelastic effects. The static aeroelastic behaviors for the two different types can be assessed by using this method.

Practical implications

As the present study uses the flight data stored in a quick access recorder, an intrusive structural inspection of the post-flight can be avoided. A tentative conclusion is to prove that this method can be adapted to examine the static aeroelastic effects for transport aircraft of different weights, different sizes and different service years in tracking static aeroelastic behavior of existing different types of aircraft. In future research, one can consider to have more issues of other types of aircraft with high composite structure weight.

Originality/value

This method can be used to assist airlines to monitor the variations of flight dynamic and static aeroelastic behaviors as a complementary tool for management to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 September 2024

Wenqi Zhang, Zhenbao Liu, Xiao Wang and Luyao Wang

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the…

Abstract

Purpose

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the stability of the aforementioned aircraft.

Design/methodology/approach

This paper uses a linear sliding mode control algorithm to analyse the stability of the UAV's attitude in a level flight state. In addition, a wind-resistant control algorithm based on the estimation of wind disturbance with a radial basis function neural network is proposed. Through the modelling of the flying wing layout UAV, the stability characteristics of a sample UAV are analysed based on the simulation data. The stability characteristics of the sample UAV are analysed based on the simulation data.

Findings

The simulation results indicate that the UAV with a flying wing layout has a short fuselage, no tail with a horizontal stabilising surface and the aerodynamic focus of the fuselage and the centre of gravity is nearby, which is indicative of longitudinal static instability. In addition, the absence of a drogue tail and the reliance on ailerons and a swept-back angle for stability result in a lack of stability in the transverse direction, whereas the presence of stability in the transverse direction is observed.

Originality/value

The analysis of the stability characteristics of the sample aircraft provides the foundation for the subsequent establishment of the control model for the flying wing layout UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 7000