Search results

1 – 10 of 477
Article
Publication date: 29 October 2021

Ran Feng and Xiaoe Qu

To identify and analyze the occurrence of Internet financial market risk, data mining technology is combined with deep learning to process and analyze. The market risk…

Abstract

Purpose

To identify and analyze the occurrence of Internet financial market risk, data mining technology is combined with deep learning to process and analyze. The market risk management of the Internet is to improve the management level of Internet financial risk, improve the policy of Internet financial supervision and promote the healthy development of Internet finance.

Design/methodology/approach

In this exploration, data mining technology is combined with deep learning to mine the Internet financial data, warn the potential risks in the market and provide targeted risk management measures. Therefore, in this article, to improve the application ability of data mining in dealing with Internet financial risk management, the radial basis function (RBF) neural network algorithm optimized by ant colony optimization (ACO) is proposed.

Findings

The results show that the actual error of the ACO optimized RBF neural network is 0.249, which is 0.149 different from the target error, indicating that the optimized algorithm can make the calculation results more accurate. The fitting results of the RBF neural network and ACO optimized RBF neural network for nonlinear function are compared. Compared with the performance of other algorithms, the error of ACO optimized RBF neural network is 0.249, the running time is 2.212 s, and the number of iterations is 36, which is far less than the actual results of the other two algorithms.

Originality/value

The optimized algorithm has a better spatial mapping and generalization ability and can get higher accuracy in short-term training. Therefore, the ACO optimized RBF neural network algorithm designed in this exploration has a high accuracy for the prediction of Internet financial market risk.

Details

Journal of Enterprise Information Management, vol. 35 no. 4/5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 31 July 2021

Niu Zijie, Zhang Peng, Yongjie Cui and Zhang Jun

Omnidirectional mobile platforms are still plagued by the problem of heading deviation. In four-Mecanum-wheel systems, this problem arises from the phenomena of dynamic…

Abstract

Purpose

Omnidirectional mobile platforms are still plagued by the problem of heading deviation. In four-Mecanum-wheel systems, this problem arises from the phenomena of dynamic imbalance and slip of the Mecanum wheels while driving. The purpose of this paper is to analyze the mechanism of omnidirectional motion using Mecanum wheels, with the aim of enhancing the heading precision. A proportional-integral-derivative (PID) setting control algorithm based on a radial basis function (RBF) neural network model is introduced.

Design/methodology/approach

In this study, the mechanism of omnidirectional motion using Mecanum wheels is analyzed, with the aim of enhancing the heading precision. A PID setting control algorithm based on an RBF neural network model is introduced. The algorithm is based on a kinematics model for an omnidirectional mobile platform and corrects the driving heading in real time. In this algorithm, the neural network RBF NN2 is used for identifying the state of the system, calculating the Jacobian information of the system and transmitting information to the neural network RBF NN1.

Findings

The network RBF NN1 calculates the deviations ?Kp, ?Ki and ?Kd to regulate the three coefficients Kp, Ki and Kd of the heading angle PID controller. This corrects the driving heading in real time, resolving the problems of low heading precision and unstable driving. The experimental data indicate that, for a externally imposed deviation in the heading angle of between 34º and ∼38°, the correction time for an omnidirectional mobile platform applying the algorithm during longitudinal driving is reduced by 1.4 s compared with the traditional PID control algorithm, while the overshoot angle is reduced by 7.4°; for lateral driving, the correction time is reduced by 1.4 s and the overshoot angle is reduced by 4.2°.

Originality/value

In this study, the mechanism of omnidirectional motion using Mecanum wheels is analyzed, with the aim of enhancing the heading precision. A PID setting control algorithm based on an RBF neural network model is introduced. The algorithm is based on a kinematics model for an omnidirectional mobile platform and corrects the driving heading in real time. In this algorithm, the neural network RBF NN2 is used for identifying the state of the system, calculating the Jacobian information of the system and transmitting information to the neural network RBF NN1. The method is innovative.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2013

Rajendra Machavaram and Shankar Krishnapillai

The purpose of this paper is to provide an effective and simple technique to structural damage identification, particularly to identify a crack in a structure. Artificial…

Abstract

Purpose

The purpose of this paper is to provide an effective and simple technique to structural damage identification, particularly to identify a crack in a structure. Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods. Radial basis function (RBF) networks are good at function mapping and generalization ability among the various neural network approaches. RBF neural networks are chosen for the present study of crack identification.

Design/methodology/approach

Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage. A novel two‐stage improved radial basis function (IRBF) neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain. Latin hypercube sampling (LHS) technique is used in both stages to sample the frequency modal patterns to train the proposed network. Study is also conducted with and without addition of 5% white noise to the input patterns to simulate the experimental errors.

Findings

The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method, in comparison with conventional RBF method and other classical methods. In case of crack location in a beam, the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF. Similar improvements are reported when compared to hybrid CPN BPN networks. It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.

Originality/value

The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere. It can identify the crack location and crack depth with very good accuracy, less computational effort and ease of implementation.

Article
Publication date: 1 December 2001

Zoran Vojinovic and Vojislav Kecman

In this paper we are presenting our research findings on how effective neural networks are at forecasting and estimating preliminary project costs. We have shown that…

Abstract

In this paper we are presenting our research findings on how effective neural networks are at forecasting and estimating preliminary project costs. We have shown that neural networks completely outperform traditional techniques in such tasks. In exploring nonlinear techniques almost all of the current research involves neural network techniques, especially multilayer perceptron (MLP) models and other statistical techniques and few authors have considered radial basis function neural network (RBF NN) models in their research. For this purpose we have developed RBF NN models to represent nonlinear static and dynamic processes and compared their performance with traditional methods. The traditional methods applied in this paper are multiple linear regression (MLR) and autoregressive moving average models with eXogenous input (ARMAX). The performance of these and RBF neural network and traditional models is tested on common data sets and their results are presented.

Details

Construction Innovation, vol. 1 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 2 October 2019

Yue Li, Xiaoquan Chu, Zetian Fu, Jianying Feng and Weisong Mu

The purpose of this paper is to develop a common remaining shelf life prediction model that is generally applicable for postharvest table grape using an optimized radial…

Abstract

Purpose

The purpose of this paper is to develop a common remaining shelf life prediction model that is generally applicable for postharvest table grape using an optimized radial basis function (RBF) neural network to achieve more accurate prediction than the current shelf life (SL) prediction methods.

Design/methodology/approach

First, the final indicators (storage temperature, relative humidity, sensory average score, peel hardness, soluble solids content, weight loss rate, rotting rate, fragmentation rate and color difference) affecting SL were determined by the correlation and significance analysis. Then using the analytic hierarchy process (AHP) to calculate the weight of each indicator and determine the end of SL under different storage conditions. Subsequently, the structure of the RBF network redesigned was 9-11-1. Ultimately, the membership degree of Fuzzy clustering (fuzzy c-means) was adopted to optimize the center and width of the RBF network by using the training data.

Findings

The results show that this method has the highest prediction accuracy compared to the current the kinetic–Arrhenius model, back propagation (BP) network and RBF network. The maximum absolute error is 1.877, the maximum relative error (RE) is 0.184, and the adjusted R2 is 0.911. The prediction accuracy of the kinetic–Arrhenius model is the worst. The RBF network has a better prediction accuracy than the BP network. For robustness, the adjusted R2 are 0.853 and 0.886 of Italian grape and Red Globe grape, respectively, and the fitting degree are the highest among all methods, which proves that the optimized method is applicable for accurate SL prediction of different table grape varieties.

Originality/value

This study not only provides a new way for the prediction of SL of different grape varieties, but also provides a reference for the quality and safety management of table grape during storage. Maybe it has a further research significance for the application of RBF neural network in the SL prediction of other fresh foods.

Details

British Food Journal, vol. 121 no. 11
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 4 November 2021

Jialiang Xie, Shanli Zhang and Ling Lin

In the new era of highly developed Internet information, the prediction of the development trend of network public opinion has a very important reference significance for…

Abstract

Purpose

In the new era of highly developed Internet information, the prediction of the development trend of network public opinion has a very important reference significance for monitoring and control of public opinion by relevant government departments.

Design/methodology/approach

Aiming at the complex and nonlinear characteristics of the network public opinion, considering the accuracy and stability of the applicable model, a network public opinion prediction model based on the bald eagle algorithm optimized radial basis function neural network (BES-RBF) is proposed. Empirical research is conducted with Baidu indexes such as “COVID-19”, “Winter Olympic Games”, “The 100th Anniversary of the Founding of the Party” and “Aerospace” as samples of network public opinion.

Findings

The experimental results show that the model proposed in this paper can better describe the development trend of different network public opinion information, has good stability in predictive performance and can provide a good decision-making reference for government public opinion control departments.

Originality/value

A method for optimizing the central value, weight, width and other parameters of the radial basis function neural network with the bald eagle algorithm is given, and it is applied to network public opinion trend prediction. The example verifies that the prediction algorithm has higher accuracy and better stability.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 May 2009

Teresa Orlowska‐Kowalska and Marcin Kaminski

The purpose of this paper is to obtain an estimation of not measured mechanical state variables of the drive system with elastic coupling between the driven motor and a…

Abstract

Purpose

The purpose of this paper is to obtain an estimation of not measured mechanical state variables of the drive system with elastic coupling between the driven motor and a load machine, using neural networks (NN) of different type for the sensorless drive system.

Design/methodology/approach

The load‐side speed and the torsional torque are estimated using multi‐layer perceptron (MLP) and radial basis function (RBF) networks. The special forms of input vectors for neural state estimators were proposed and tested in open‐ and closed‐loop control structure. The estimation quality as well as sensitivity of neural estimators to the changes of the inertia moment of the load machine were evaluated and compared.

Findings

It is shown that an application of RBF‐based neural estimators can give better accuracy of the load speed and torsional torque estimation, especially for the proper choice of the input vector of NN, also in the case of a big change of the load machine time constant.

Research limitations/implications

The investigation and comparison is based on simulation tests and looked mainly at the quality of state variable estimation while the realisation cost in parallel processing devices (FPGA) still need to be addressed.

Practical implications

The proposed neural state variable estimators of two‐mass system can be practically implemented in the control structure of two‐mass drive with additional feedbacks from load machine speed and torsional torque, which results in the successive vibration damping.

Originality/value

The application of RBF neural state estimators for two‐mass drive and their comparison with commonly used MLP‐based estimators, as well as testing of both type of NN in the closed‐loop control structure with additional feedbacks based on state variables estimated by neural estimators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 June 2010

Yigao Deng and Youan Zhang

The purpose of this paper is to present a sliding mode controller design method for a class of uncertain nonlinear systems with uncertainties and to demonstrate a…

Abstract

Purpose

The purpose of this paper is to present a sliding mode controller design method for a class of uncertain nonlinear systems with uncertainties and to demonstrate a recursive derivative estimation procedure for the derivatives of system outputs.

Design/methodology/approach

A recursive derivative estimation procedure for the derivatives of system outputs is demonstrated. Radial basis function (RBF) neural networks are used to approximate the uncertainties and filters are introduced to estimate the derivatives of system outputs step‐by‐step. The adaptive tuning rules of RBF neural network weight matrices are derived by the Lyapunov stability theorem, which guarantees filter errors and network weight errors are bounded and exponentially converge to a neighborhood of the origin globally. The sliding mode controller is designed based on the estimation for the derivatives of system outputs such that the sliding surface converges to zero and the system control input is bounded.

Findings

The sliding mode controller can make the system output track the desired output with arbitrarily small tracking error. The filter errors and network weight estimation errors can be made arbitrarily small, and all the system signals are bounded. The proposed method does not need the supper bounds of the unmatched uncertainties and their any order derivatives.

Research limitations/implications

The system output and uncertainties are required to be sufficiently smooth in the proposed method. In practice, this condition is always satisfied generally.

Practical implications

This paper contains very useful advice for researchers on the sliding mode control and the use of neural networks.

Originality/value

The paper presents a new sliding mode controller design method based on recursive derivative estimation of system outputs using neural networks. The paper is aimed at theoretical researchers, especially those who have interest in sliding mode control, neural networks, adaptive techniques, and recursive estimation.

Details

Kybernetes, vol. 39 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 April 2012

Yaonan Wang and Xiru Wu

The purpose of this paper is to present the radial basis function (RBF) networks‐based adaptive robust control for an omni‐directional wheeled mobile manipulator in the…

Abstract

Purpose

The purpose of this paper is to present the radial basis function (RBF) networks‐based adaptive robust control for an omni‐directional wheeled mobile manipulator in the presence of uncertainties and disturbances.

Design/methodology/approach

First, a dynamic model is obtained based on the practical omni‐directional wheeled mobile manipulator system. Second, the RBF neural network is used to identify the unstructured system dynamics directly due to its ability to approximate a nonlinear continuous function to arbitrary accuracy. Using the learning ability of neural networks, RBFNARC can co‐ordinately control the omni‐directional mobile platform and the mounted manipulator with different dynamics efficiently. The implementation of the control algorithm is dependent on the sliding mode control.

Findings

Based on the Lyapunov stability theory, the stability of the whole control system, the boundedness of the neural networks weight estimation errors, and the uniformly ultimate boundedness of the tracking error are all strictly guaranteed.

Originality/value

In this paper, an adaptive robust control scheme using neural networks combined with sliding mode control is proposed for crawler‐type mobile manipulators in the presence of uncertainties and disturbances. RBF neural networks approximate the system dynamics directly and overcome the structured uncertainty by learning. Based on the Lyapunov stability theory, the stability of the whole control system, the boundedness of the neural networks weight estimation errors, and the uniformly ultimate boundedness of the tracking error are all strictly guaranteed.

Article
Publication date: 20 March 2017

Jiadi Qu, Fuhai Zhang, Yili Fu, Guozhi Li and Shuxiang Guo

The purpose of this paper is to develop a vision-based dual-arm cyclic motion method, focusing on solving the problems of an uncertain grasp position of the object and the…

Abstract

Purpose

The purpose of this paper is to develop a vision-based dual-arm cyclic motion method, focusing on solving the problems of an uncertain grasp position of the object and the dual-arm joint-angle-drift phenomenon.

Design/methodology/approach

A novel cascade control structure is proposed which associates an adaptive neural network with kinematics redundancy optimization. A radial basis function (RBF) neural network in conjunction with a conventional proportional–integral (PI) controller is applied to compensate for the uncertainty of the image Jacobian matrix which includes the estimated grasp position. To avoid the joint-angle-drift phenomenon, a dual neural network (DNN) solver in conjunction with a PI controller and dual-arm-coordinated constraints is applied to optimize the closed-chain kinematics redundancy.

Findings

The proposed method was implemented on an industrial robotic MOTOMAN with two 7-degrees of freedom robotic arms. Two experiments of carrying a tray repeatedly and turning a steering wheel were carried out, and the results indicate that the closed-trajectories tracking is achieved successfully both in the image plane and the joint spaces with the uncertain grasp position, which validates the accuracy and realizability of the proposed PI-RBF-DNN control strategy.

Originality/value

The adaptive neural network visual servoing method is applied to the dual-arm cyclic motion with the uncertain grasp position of the object. The proposed method enhances the environmental adaptability of a dual-arm robot in a practical manipulation task.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 477