Search results

1 – 10 of 16
Open Access
Article
Publication date: 19 September 2024

Srivatsa Maddodi and Srinivasa Rao Kunte

The Indian stock market can be tricky when there's trouble in the world, like wars or big conflicts. It's like trying to read a secret message. We want to figure out what makes…

Abstract

Purpose

The Indian stock market can be tricky when there's trouble in the world, like wars or big conflicts. It's like trying to read a secret message. We want to figure out what makes investors nervous or happy, because their feelings often affect how they buy and sell stocks. We're building a tool to make prediction that uses both numbers and people's opinions.

Design/methodology/approach

Hybrid approach leverages Twitter sentiment, market data, volatility index (VIX) and momentum indicators like moving average convergence divergence (MACD) and relative strength index (RSI) to deliver accurate market insights for informed investment decisions during uncertainty.

Findings

Our study reveals that geopolitical tensions' impact on stock markets is fleeting and confined to the short term. Capitalizing on this insight, we built a ground-breaking predictive model with an impressive 98.47% accuracy in forecasting stock market values during such events.

Originality/value

To the best of the authors' knowledge, this model's originality lies in its focus on short-term impact, novel data fusion and high accuracy. Focus on short-term impact: Our model uniquely identifies and quantifies the fleeting effects of geopolitical tensions on market behavior, a previously under-researched area. Novel data fusion: Combining sentiment analysis with established market indicators like VIX and momentum offers a comprehensive and dynamic approach to predicting market movements during volatile periods. Advanced predictive accuracy: Achieving the prediction accuracy (98.47%) sets this model apart from existing solutions, making it a valuable tool for informed decision-making.

Details

Journal of Capital Markets Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-4774

Keywords

Article
Publication date: 15 August 2024

Srivatsa Maddodi and Srinivasa Rao Kunte

This study explores the complex impact of COVID-19 on India's financial sector, moving beyond simplistic public health vs. economy views. We assess market vulnerabilities and…

Abstract

Purpose

This study explores the complex impact of COVID-19 on India's financial sector, moving beyond simplistic public health vs. economy views. We assess market vulnerabilities and analyze how public sentiment, measured through Google Trends, can predict stock market fluctuations. We propose a novel framework using Google Trends for financial sentiment analysis, aiming to improve understanding and preparedness for future crises.

Design/methodology/approach

Hybrid approach leverages Google Trends as sentiment tool, market data, and momentum indicators like Rate of Change, Average Directional Index and Stochastic Oscillator, to deliver accurate, market insights for informed investment decisions during pandemic.

Findings

Our study reveals that the pandemic significantly impacted the Indian financial sector, highlighting its vulnerabilities. Capitalizing on this insight, we built a ground-breaking predictive model with an impressive 98.95% maximum accuracy in forecasting stock market values during such events.

Originality/value

To the best of authors knowledge this model's originality lies in its focus on short-term impact, novel data fusion and methodology, and high accuracy.• Focus on short-term impact: Our model uniquely identifies and quantifies the fleeting effects of COVID-19 on market behavior.• Novel data fusion and framework: A novel framework of sentiment analysis was introduced in the form of Trend Popularity Index. Combining trend popularity index with momentum offers a comprehensive and dynamic approach to predicting market movements during volatile periods.• High predictive accuracy: Achieving the prediction accuracy (98.93%) sets this model apart from existing solutions, making it a valuable tool for informed decision-making.

Details

Managerial Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0307-4358

Keywords

Article
Publication date: 5 February 2024

Prabir Barman, Srinivasa Rao Pentyala and B.V. Rathish Kumar

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and…

Abstract

Purpose

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and solid walls irreversibly generate entropy. This numerical study aims to investigate convective heat transfer together with entropy generation in a partially heated wavy porous cavity filled with a hybrid nanofluid.

Design/methodology/approach

The governing equations are nondimensionalized and the domain is transformed into a unit square. A second-order finite difference method is used to have numerical solutions to nondimensional unknowns such as stream function and temperature. This numerical computation is conducted to explore a wide range of regulating parameters, e.g. hybrid nano-particle volume fraction (σ = 0.1%, 0.33%, 0.75%, 1%, 2%), Rayleigh–Darcy number (Ra = 10, 102, 103), dimensionless length of the heat source (ϵ = 0.25, 0.50,1.0) and amplitude of the wave (a = 0.05, 0.10, 0.15) for a number of undulations (N = 1, 3) per unit length.

Findings

A thorough analysis is conducted to analyze the effect of multiple factors such as thermal convective forces, heat source, surface corrugation factors, nanofluid volume fraction and other parameters on entropy generation. The flow and temperature fields are studied through streamlines and isotherms. The average Bejan number suggested that entropy generation is entirely dominated by irreversibility due to heat transport at Ra = 10, and the irreversibility due to the viscosity effect is severe at Ra = 103, but the increment in s augments irreversibility due to the viscosity effect over the heat transport at Ra = 102.

Originality/value

To the best of the authors’ knowledge, this numerical study, for the first time, analyzes the influence of surface corrugation on the entropy generation related to the cooling of a partial heat source by the convection of a hybrid nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2024

Divya Shree M. and Srinivasa Rao Inabathini

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics…

Abstract

Purpose

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics on a low-loss Taconic substrate and analyze using the coupled theory of resonators for UWB range covering L, S, C and X bands for radars, global positioning system (GPS) and satellite communication applications.

Design/methodology/approach

The filter is designed with a bent coupled transmission line on the top copper layer. Defected ground structures (DGSs) like complementary split ring resonators (CSRRs), V-shaped resonators, rectangular slots and quad circle slots (positioned inwards and outwards) are etched in the ground layer of the filter. The circular orientation of V-shaped resonators adds compactness when linearly placed. By arranging the quad circle slots outwards and inwards at the corner and core of the ground plane, respectively, two filters (Filters I and II) are designed, fabricated and measured. These two filters feature a quasi-elliptic response with transmission zeros (TZs) on either side of the bandpass response, making it highly selective and reflection poles (RPs), resulting in a low-loss filter response. The transmission line model and coupled line theory are implemented to analyze the proposed filters.

Findings

Two filters by placing the quad circle slots outwards (Filter I) and inwards (Filter II) were designed, fabricated and tested. The fabricated model (Filter I) provides transmission with a maximum insertion loss of 2.65 dB from 1.5 GHz to 9.2 GHz. Four TZs and five RPs are observed in the frequency response. The lower and upper stopband band width (BW) of the measured Filter I are 1.2 GHz and 5.5 GHz of upper stopband BW with rejection level greater than 10 dB, respectively. Filter II (inward quad circle slots) operates from 1.4 GHz to 9.05 GHz with 1.65 dB maximum insertion loss inside the passband with four TZs and four RPs, which, in turn, enhances the filter characteristics in terms of selectivity, flatness and stopband. Moreover, 1 GHz BW of lower and upper stopbands are observed. Thus, the fabricated filters (Filters I and II) are therefore evaluated, and the outcomes show good agreement with the electromagnetic simulation response.

Research limitations/implications

The limitation of this work is the back radiation caused by DGS, which can be eradicated by placing the filter in the cavity and retaining its performance.

Practical implications

The proposed UWB BPFs with novel resonators find their role in the UWB range covering L, S, C and X bands for radars, GPS and satellite communication applications.

Originality/value

To the best of the authors’ knowledge, for the first time, the authors develop a compact UWB BPFs (Filters I and II) with BW greater than 7.5 GHz by combining reformed coupled lines and DGS resonators (CSRRs, V-shaped resonators [modified hairpin resonators], rectangular slots and quad circle slots [inwards and outwards]) for radars, GPS and satellite communication applications.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 July 2022

Sai Vamsi Krishna Tataverthi and Srinivasa Rao Devisetty

The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy.

Abstract

Purpose

The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy.

Design/methodology/approach

The material is synthesized in a controlled atmosphere to minimize the reaction of alloying elements with the atmosphere. Cast samples were homogenized, then subjected to hot rolling and further betatized, followed by step quenching. Eight samples were chosen for study among which first four samples varied in Al content, and the next set of four samples varied in Ag composition.

Findings

The testing yielded a result that the increase in binary alloying element decreased transformation temperature range but increased entropy and elastic energy values. It also improved the shape memory effect and mechanical properties (UTS and hardness). An increase in ternary alloying element increased transformation temperature range, entropy and elastic energy values. The shape memory effect and mechanical properties are enhanced by the increase in ternary alloying element. The study revealed that compositional variation of Al should be limited to a range of 8 to 14 Wt.% and Ag from 2 to 8 Wt.%. Microstructural and diffraction studies identified the ß’1 martensite as a desirable phase for enhancing shape memory properties.

Originality/value

Numerous studies have been made in exploring the transformation temperature and phase formation for similar Cu-Al-Ag shape memory alloys, but their influence on shape memory effect was not extensively studied. In the present work, the influence of Al and Ag content on shape memory characteristics is carried out to increase the design choice for engineering applications of shape memory alloy. These materials exhibit mechanical and shape memory properties within operating ranges similar to other copper-based shape memory alloys.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 April 2022

Srinivasa Rao Kareti, Vivek Singh Rajpoot and Hari Haran Ramar

The purpose of this study was to develop a suitable module for digital conservation of traditional knowledge of medicinal plants (MPs) used by tribal communities living in the…

Abstract

Purpose

The purpose of this study was to develop a suitable module for digital conservation of traditional knowledge of medicinal plants (MPs) used by tribal communities living in the Anuppur district of Madhya Pradesh, Central India.

Design/methodology/approach

The research used a qualitative approach to gather the data of MPs through the use of literature review and field survey. Based on the acquired data, a prototype digital learning system was constructed and assessed. This study used digital learning technologies to assess the requirements for transmitting traditional knowledge of important MPs used by tribal communities so that people can absorb and conserve them.

Findings

Over time, the focus on the digital conservation of traditional MP’s knowledge has progressively increased globally. Despite the rise in this field of study, information technology methods to preserve and distribute traditional knowledge of MPs have remained a few. When adopting digital learning to maintain traditional knowledge of MPs, it was discovered that it would be necessary to engage with relevant knowledge keepers, use multimedia, and provide content in local languages.

Research limitations/implications

This study helps in conservation of important MP species that are having biologically important therapeutic compounds meant for treating various ailments. Older generations of various tribal communities mainly hold traditional knowledge of important MPs, and unless it is preserved, it will perish along with its caretakers.

Originality/value

It is worth looking at a digital platform that can help future generations to maintain traditional knowledge of MPs, as it is a dynamic and ever-changing, it must involve a digital tool for its future conservation. Current methods for maintaining traditional knowledge of MPs were ineffective and constrained by space and time.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 54 no. 4
Type: Research Article
ISSN: 2059-5891

Keywords

Article
Publication date: 1 May 2020

Suneetha Ch, Srinivasa Rao S and K.S. Ramesh

Electronic devices aid communication during new communication phases and the scope of cognitive radio networks has changed communication paradigms through efficient use of…

Abstract

Purpose

Electronic devices aid communication during new communication phases and the scope of cognitive radio networks has changed communication paradigms through efficient use of spectrums. The communication prototype of cognitive radio networks defines user roles as primary user and secondary user in the context of the spectrum allocation and use. The users who have licensed authority of the spectrum are denoted as primary users, while other eligible users who access the corresponding spectrum are secondary users.

Design/methodology/approach

The multiple factors of transmission service quality can have a negative influence due to improper scheduling of spectrum bands between primary users and secondary users. There are considerable contributions in contemporary literature concerning spectrum band scheduling under spectrum sensing. However, the majority of the scheduling models are intended to manage a limited number of transmission service quality factors. Moreover, these service quality factors are functional and derived algorithmically from the current corresponding spectrum. However, there is evidence of credible performance deficiency regarding contemporary spectrum sensing methods

Findings

This article intends to portray a fuzzy guided integrated factors-based spectrum band sharing within the spectrum used by secondary users. This study attempts to explain the significance of this proposal compared to other contemporary models.

Originality/value

This article intends to portray a fuzzy guided integrated factors-based spectrum band sharing within the spectrum used by secondary users. This study attempts to explain the significance of this proposal compared to other contemporary models.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2022

Raghavaiah N.V. and Naga Srinivasulu G.

The purpose of this paper is to investigate the performance of Passive Direct Methanol Fuel Cell (PDMFC) experimentally using various Membrane Electrode Assembly (MEA) shapes such…

Abstract

Purpose

The purpose of this paper is to investigate the performance of Passive Direct Methanol Fuel Cell (PDMFC) experimentally using various Membrane Electrode Assembly (MEA) shapes such as square, rectangle, rhombus, and circle with equal areas and equal perimeters. The variation in MEA shape/size is achieved by altering gasket openings in the dynamic regions.

Design/methodology/approach

In the equal areas of MEA shapes, gasket opening areas of 1963.5 (+/−0.2) mm2 are used. Whereas in the equal perimeters of shapes, gasket opening perimeters of 157.1 (+/−0.2) mm are used. In this experimentation, Nickel-201 current collectors with 45.3% of circular openings are used on both the anode and cathode sides. The experiment is carried out at a 5 molar methanol concentration to find out the highest power density of the cell.

Findings

In the equal areas, among the shapes that are chosen for investigation, the square shape opening consisting of a perimeter of 177.2 mm has developed a maximum power density of 6.344 mWcm−2 and a maximum current density of 65.2 mAcm−2. Similarly, in equal perimeters, the rhombus shape opening with an area of 1400 mm2 has developed a maximum power density of 7.714 mWcm−2 and a maximum current density of 85.3 mAcm−2.

Originality/value

The novelty of this research work is instead of fabricating various shapes and sizes of highly expensive MEAs, the desired shapes and sizes of the MEA are achieved by altering gasket openings over dynamic regions to find out the highest power density of the cell.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 29 December 2023

Raj Krishna and Kumar Mukul Choudhary

Post COVID-19 crisis, healthcare has become a priority for every government. Furthermore, the pandemic has also made us realise why do we need an affordable healthcare delivery…

Abstract

Post COVID-19 crisis, healthcare has become a priority for every government. Furthermore, the pandemic has also made us realise why do we need an affordable healthcare delivery service at the grassroots level. As a result, the Government of India has come out with the Ayushman Sahakar scheme. This scheme has been launched by the Union Government with an aim to assist the cooperatives in the creation of healthcare infrastructure in this country. It is pertinent to note that the cooperatives in the last few years have transformed rural areas and have pushed them out of poverty. As a result, it will be interesting to see the impact cooperatives will have in the field of healthcare.

The authors in this work have discussed the history of healthcare cooperatives in India. After this, the authors have analysed the government schemes and legal provisions which regulate the functioning of healthcare cooperatives in this country. In the next part, the authors studied the Ayushman Sahakar scheme. The authors have discussed the features of the scheme and the impact it has generated in the field of healthcare. Lastly, the author has discussed the challenges which healthcare cooperatives face in this country and how we can overcome those challenges.

Details

World Healthcare Cooperatives: Challenges and Opportunities
Type: Book
ISBN: 978-1-80455-775-4

Keywords

1 – 10 of 16