Search results

1 – 10 of over 5000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4543

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1451

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 June 2010

Xianguo Hu, Yourong Wang and Hefeng Jing

The purpose of this paper is to develop a new oil‐in‐water (O/W) emulsion used for alpha phase brass, which can increase the antiwear and anti‐galling abilities of the rollers…

Abstract

Purpose

The purpose of this paper is to develop a new oil‐in‐water (O/W) emulsion used for alpha phase brass, which can increase the antiwear and anti‐galling abilities of the rollers, and improve the surface quality of the rolled brass sheet. The aim is to evaluate the tribological performance of new kind of O/W emulsion for the hot rolling of alpha brass, which provides the fundamental information for the selecting of new chemical group, and to understand the lubrication mechanism of the used rolling emulsion and to correlate the laboratory findings with those of industrial rolling of alpha phase brass.

Design/methodology/approach

According to the hydrophile‐lipophile balance theory and the evaluation results of friction, wear and lubrication using a four‐ball tribometer, a novel O/W emulsion was developed for the hot rolling process of CuZn32(ASTM C26200) and CuZn30(ASTM C26000) alloys by controlling the composition of the emulsion, such as emulsifying, antiwear, extreme pressure, antirust and so on. By scanning electron microscope (SEM), energy‐dispersive X‐ray (EDX), and roughness profile the tribological mechanism were studied.

Findings

The production result proved that it was easy to control the accuracy and size of the brass sheet because of the emulsion‐jet to the roller surface directly and in succession. Polyol with hydroxyl group is found to provide better lubrication and lower coefficient of friction. The actual hot rolling results proved that it was easy to control the accuracy and size of the brass sheet with the emulsion jet. The morphologies and roughness profile of the copper sheet surface were observed and measured by SEM and topographic meter under different lubricant conditions. The in situ results supported the selection of compositions of O/W emulsion. The suitable temperature of feed emulsion is over 20°C.

Research limitations/implications

The tribological mechanism of friction modified emulsion is not still clear. The thermal mechanical properties of rollers under this kind of emulsion are also worth studying in the future.

Practical implications

Understanding the tribological behaviour of O/W emulsion, will be useful for emulsion chemists, tribologists and rolling mill users.

Originality/value

The current study shows new compositions of O/W emulsion used for hot rolling of alpha phase brass.

Details

Industrial Lubrication and Tribology, vol. 62 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4736

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 October 2016

P. Pourabdollah and S. Serajzadeh

The purpose of this paper is to investigate the thermomechanical behavior of stainless steel AISI 304L during rolling at elevated temperatures.

Abstract

Purpose

The purpose of this paper is to investigate the thermomechanical behavior of stainless steel AISI 304L during rolling at elevated temperatures.

Design/methodology/approach

Two-dimensional finite element analysis together with the upper-bound solution were used for predicting temperature field and required power in warm and hot rolling operations. The required power and heat of deformation were estimated employing an upper-bound solution based on cylindrical velocity field and at the same time, temperature distributions within the rolling steel and the work rolls were determined by means of a thermal finite element analysis. To consider the effect of flow stress and its dependence on temperature, strain and strain rate, a neural network model was used and combined with the thermal and mechanical models. Finally, the microstructure of rolled steel was studied and the effect of rolling conditions was justified employing the predictions.

Findings

The results have shown that the predicted temperature variations were in good agreement with the experiments. Moreover, the model was shown to be capable of determining the effects of various rolling parameters such as reduction and rolling speed with low-computational cost as well as reasonable accuracy.

Originality/value

A combined upper-bound finite element analysis was developed to predict the required power and temperature field during plate rolling while the model can be employed under both hot and warm rolling conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1954

A.L.H. PERRY

OF the whole range of metal rolling operations, almost the only section in which rolling oils are normally employed is in the cold rolling of flat material in plain cylindrical…

Abstract

OF the whole range of metal rolling operations, almost the only section in which rolling oils are normally employed is in the cold rolling of flat material in plain cylindrical rolls. The metal for cold rolling has usually first been hot rolled in plain cylindrical rolls, but only in a few cases are rolling oils used in the hot rolling operation. These exceptions are referred to when considering the particular metals.

Details

Industrial Lubrication and Tribology, vol. 6 no. 2
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 8 May 2018

Chenggang Pan, Zizheng Ding, Qingming Chang and Jialin Zhou

Surface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial…

Abstract

Purpose

Surface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial defects on continuous casting slabs. This work aims to trace the original surface defect during the whole heavy rail rolling and avoid black line surface defect that appears on the surface of heavy rail finial product.

Design/methodology/approach

Artificial round hole-shaped surface defects on the surface of continuous casting slab during the hot rolling of 60 kg/m heavy rail are analyzed experimentally and by means of explicit dynamic finite element method (FEM) and modified model rebuilding method.

Findings

The calculated results of surface defect locations of heavy rail finial product are in good agreement with the experimental ones. It is shown that the explicit dynamic FEM and modified model rebuilding method can be used effectively to predict the flow behavior of surface defects in the hot rolling of 60 kg/m heavy rail.

Originality/value

The three-dimensional finite element model for whole heavy rail rolling is built using explicit dynamic code and modified model rebuilding method. Flow behavior of black lines is studied in the 60-kg/m heavy rail rolling. The simulation results of six typical points are in good agreement with the experimental results.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2016

Miguel Abambres and Wai-Meng Quach

Although the actual residual stress distribution in any structural steel member can be only obtained by experimental measurements, it is known to be a difficult, tedious and…

1225

Abstract

Purpose

Although the actual residual stress distribution in any structural steel member can be only obtained by experimental measurements, it is known to be a difficult, tedious and inefficient piece of work with limited accuracy. Thus, besides aiming at clarifying structural designers and researchers about the possible ways of modelling residual stresses when performing finite element analysis (FEA), the purpose of this paper is to provide an effective literature review of the longitudinal membrane residual stress analytical expressions for carbon steel non-heavy sections, covering a vast range of structural shapes (plates, I, H, L, T, cruciform, SHS, RHS and LSB) and fabrication processes (hot-rolling, welding and cold-forming).

Design/methodology/approach

This is a literature review.

Findings

Those residual stresses are those often required as input of numerical analyses, since the other types are approximately accounted for through the s-e curves of coupons cut from member walls.

Practical implications

One of the most challenging aspects in FEA aimed to simulate the real behaviour of steel members, is the modelling of residual stresses.

Originality/value

Besides aiming at clarifying structural designers and researchers about the possible ways of modelling residual stresses when performing FEA, this paper also provides an effective literature review of the longitudinal membrane residual stress analytical expressions for carbon steel non-heavy sections, covering a vast range of structural shapes (plates, I, H, L, T, cruciform, SHS, RHS and LSB) and fabrication processes (hot-rolling, welding and cold-forming).

Details

International Journal of Structural Integrity, vol. 7 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 2013

Spyros A. Papaefthymiou

Steel heavy plates, grade S355, micro‐alloyed with Vanadium‐V and/or Niobium‐Nb plus Titanium‐Ti in thicknesses from 5 to 60 mm, 200.000‐350.000 t/y, are produced according to EN…

Abstract

Purpose

Steel heavy plates, grade S355, micro‐alloyed with Vanadium‐V and/or Niobium‐Nb plus Titanium‐Ti in thicknesses from 5 to 60 mm, 200.000‐350.000 t/y, are produced according to EN 10025 at STOMANA S.A., a company of the SIDENOR Group in Pernik Bulgaria, and are exported to the European Market. These plates fulfil high quality standards as they are used for constructions and engineering applications (e.g. high‐building constructions, bridges, shipping applications, cranes, etc.). Often intermediate and/or final products (slabs and plates, respectively) suffer from surface and/or internal defects, which deteriorate the final product's quality. The purpose of this paper is to look at the challenging task of eliminating the external and especially the internal defects.

Design/methodology/approach

ELKEME performs root‐cause analysis and proposes improvement actions. For these purposes light optical metallography (LOM) and scanning electron microscopy (SEM) with EDS were applied. For the analysis a NIKON SMZ 1500 stereoscope (up to 100x), a NIKON epiphot 300 inverted metallographic microscope (up to 1000x) and a Philips XL‐40 SEM were used.

Findings

Most surface defects are attributed to copper (having its origin mainly from scrap or from mould's wear due to bad lubrication), or casting powder entrapping, cracks at deep oscillation mark points or transverse cracking, with the majority occurring during continuous casting. High‐copper amounts in the steel cause hot shortness issues. Hot tears in the surface of “as‐cast” material lead to flakes and tears in the plates after hot rolling. The torn surfaces are heavily oxidized and decarburized if oxidizing‐conditions exist in the reheating‐furnace. Internal defects are related with large‐concentrated MnS stringers and entrapped in the steel desoxidation products. Additionally, based on carbon amount of the cast steel, macro‐segregation can lead to crack initiation and propagation along the centreline.

Research limitations/implications

This work refers to industrial research widely applied and focused. Sampling and root cause analysis is never easy in an industrial environment. The most difficult part is to identify the critical process conditions that reflect to negative quality issues in the final product.

Originality/value

Internal defects, especially centreline segregation and inclusion clustering, are important imperfections that deteriorate material properties and jeopardize the products’ structural integrity. The paper discusses possible root‐causes in relation to the overall production processes, concluding in improvement actions for in‐plant operation given the equipment limitations of the very specific production site.

Details

International Journal of Structural Integrity, vol. 4 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 May 2024

Kavimani V., Kumaran S., Vignesh Ponnusamy and Navneet Kumar

This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.

Abstract

Purpose

This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.

Design/methodology/approach

Graphene reinforced composite was developed by using stir casting route and rolled with different reduction in thickness such as 50, 75 and 90%. Microstructure, hardness and tensile characteristics of the rolled samples were evaluated.

Findings

Investigation on microstructures of rolled composite depicts that increase in rolling reduction % resulted in fine elongated grains and decreased aspect ratio. Further, it was also observed that increasing percentage of rolling reduction promotes the dissolution of ß Li phase and as a result the ductility of composite decreases. Interrupted rolled samples showcase higher hardness when compared with as-cast composite. Composite rolled with 90% reduction displays higher yield strength of 219 MPa. Hardening capacity of composites decreases with increase in reduction percentage due to the effective reduction in grain size.

Originality/value

Investigation on the influence of interrupted rolling on microstructures and mechanical properties of Mg graphene composite. The in-depth understanding of this will help to improve its wide spread application.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 5000