Search results

1 – 10 of 13
Article
Publication date: 12 March 2024

Salma Benharref, Vincent Lanfranchi, Daniel Depernet, Tahar Hamiti and Sara Bazhar

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Abstract

Purpose

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Design/methodology/approach

The voltage harmonics are determined using the double Fourier integral. As for current harmonics and waveforms, a new generic model based on the Park transformation and a dq model of the machine was established taking saturation into consideration. The obtained analytical waveforms are then injected into a finite element software to compute magnetic pressures using nodal forces.

Findings

The overall proposed method allows to accelerate the calculations and the comparison of different PWM strategies and operating points as an analytical model is used to generate current waveforms.

Originality/value

While the analytical expressions of voltage harmonics are already provided in the literature for the space vector pulse width modulation, they had to be calculated for the discontinuous pulse width modulation. In this paper, the obtained expressions are provided. For current harmonics, different models based on a linear and a nonlinear model of the machine are presented in the referenced papers; however, these models are not generic and are limited to the second range of harmonics (two times the switching frequency). A new generic model is then established and used in this paper after being validated experimentally. And finally, the direct injection of analytical current waveforms in a finite element software to perform any magnetic computation is very efficient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2023

Ashwini K. and Jagadeesh V.K.

The purpose of this paper is to present an up-to-date survey on the non-orthogonal multiple access (NOMA) technique with co-operative strategy, a fast-evolving fifth-generation…

Abstract

Purpose

The purpose of this paper is to present an up-to-date survey on the non-orthogonal multiple access (NOMA) technique with co-operative strategy, a fast-evolving fifth-generation (5 G) technology. NOMA is used for serving many mobile users, both in power and code domains. This paper considers the power-domain NOMA, which is now discussed as NOMA.

Design/methodology/approach

The first part of the paper discusses NOMA-based cooperative relay systems using different relay strategies over different channel models. In various research works, the analytical expressions of many performance metrics were derived, measured and simulated for better performance of the NOMA systems. In the second part, a brief introduction to diversity techniques is discussed. The multiple input and multiple output system merged with cooperative NOMA technology, and its future challenges were also presented in this part. In the third part, the paper surveys some new conceptions such as cognitive radio, index modulation multiple access, space-shift keying and reconfigurable intelligent surface that can be combined with NOMA systems for better performance.

Findings

The paper presents a brief survey of diverse research projects being carried out in the field of NOMA. The paper also surveyed two different relaying strategies that were implemented in cooperative NOMA over different channels and compared several performance parameters that were evaluated and derived in these implementations.

Originality/value

The paper provides a scope for recognizable future work and presents a brief idea of the new techniques that can be united with NOMA for better performance in wireless systems.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 November 2023

Armin Mahmoodi, Leila Hashemi and Milad Jasemi

In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid…

Abstract

Purpose

In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid models have been developed for the stock markets which are a combination of support vector machine (SVM) with meta-heuristic algorithms of particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).All the analyses are technical and are based on the Japanese candlestick model.

Design/methodology/approach

Further as per the results achieved, the most suitable algorithm is chosen to anticipate sell and buy signals. Moreover, the authors have compared the results of the designed model validations in this study with basic models in three articles conducted in the past years. Therefore, SVM is examined by PSO. It is used as a classification agent to search the problem-solving space precisely and at a faster pace. With regards to the second model, SVM and ICA are tested to stock market timing, in a way that ICA is used as an optimization agent for the SVM parameters. At last, in the third model, SVM and GA are studied, where GA acts as an optimizer and feature selection agent.

Findings

As per the results, it is observed that all new models can predict accurately for only 6 days; however, in comparison with the confusion matrix results, it is observed that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the data for stock market of the years 2013–2021 were analyzed; the long length of timeframe makes the input data analysis challenging as they must be moderated with respect to the conditions where they have been changed.

Originality/value

In this study, two methods have been developed in a candlestick model; they are raw-based and signal-based approaches in which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 30 November 2023

Shi Yin, Zengying Gao and Tahir Mahmood

The aim of this study is to (1) construct a standard framework for assessing the capability of bioenergy enterprises' digital green innovation partners; (2) quantify the choice of…

Abstract

Purpose

The aim of this study is to (1) construct a standard framework for assessing the capability of bioenergy enterprises' digital green innovation partners; (2) quantify the choice of partners for digital green innovation by bioenergy enterprises; (3) propose based on a dual combination empowerment niche digital green innovation field model.

Design/methodology/approach

Fuzzy set theory is combined into field theory to investigate resource complementarity. The successful application of the model to a real case illustrates how the model can be used to address the problem of digital green innovation partner selection. Finally, the standard framework and digital green innovation field model can be applied to the practical partner selection of bioenergy enterprises.

Findings

Digital green innovation technology of superposition of complementarity, mutual trust and resources makes the digital green innovation knowledge from partners to biofuels in the enterprise. The index rating system included eight target layers: digital technology innovation level, bioenergy technology innovation level, bioenergy green level, aggregated digital green innovation resource level, bioenergy technology market development ability, co-operation mutual trust and cooperation aggregation degree.

Originality/value

This study helps to (1) construct the evaluation standard framework of digital green innovation capability based on the dual combination empowerment theory; (2) develop a new digital green innovation domain model for bioenergy enterprises to select digital green innovation partners; (3) assist bioenergy enterprises in implementing digital green innovation practices.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 8 December 2023

Armin Mahmoodi, Leila Hashemi, Amin Mahmoodi, Benyamin Mahmoodi and Milad Jasemi

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese…

Abstract

Purpose

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese Candlestick, which is combined by the following meta heuristic algorithms: support vector machine (SVM), meta-heuristic algorithms, particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).

Design/methodology/approach

In addition, among the developed algorithms, the most effective one is chosen to determine probable sell and buy signals. Moreover, the authors have proposed comparative results to validate the designed model in this study with the same basic models of three articles in the past. Hence, PSO is used as a classification method to search the solution space absolutelyand with the high speed of running. In terms of the second model, SVM and ICA are examined by the time. Where the ICA is an improver for the SVM parameters. Finally, in the third model, SVM and GA are studied, where GA acts as optimizer and feature selection agent.

Findings

Results have been indicated that, the prediction accuracy of all new models are high for only six days, however, with respect to the confusion matrixes results, it is understood that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the authors to analyze the data the long length of time between the years 2013–2021, makes the input data analysis challenging. They must be changed with respect to the conditions.

Originality/value

In this study, two methods have been developed in a candlestick model, they are raw based and signal-based approaches which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

Journal of Capital Markets Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-4774

Keywords

Article
Publication date: 19 August 2022

Anjali More and Dipti Rana

Referred data set produces reliable information about the network flows and common attacks meeting with real-world criteria. Accordingly, this study aims to focus on the use of…

Abstract

Purpose

Referred data set produces reliable information about the network flows and common attacks meeting with real-world criteria. Accordingly, this study aims to focus on the use of imbalanced intrusion detection benchmark knowledge discovery in database (KDD) data set. KDD data set is most preferably used by many researchers for experimentation and analysis. The proposed algorithm improvised random forest classification with error tuning factors (IRFCETF) deals with experimentation on KDD data set and evaluates the performance of a complete set of network traffic features through IRFCETF.

Design/methodology/approach

In the current era of applications, the attention of researchers is immersed by a diverse number of existing time applications that deals with imbalanced data classification (ImDC). Real-time application areas, artificial intelligence (AI), Industrial Internet of Things (IIoT), etc. are dealing ImDC undergo with diverted classification performance due to skewed data distribution (SkDD). There are numerous application areas that deal with SkDD. Many of the data applications in AI and IIoT face the diverted data classification rate in SkDD. In recent advancements, there is an exponential expansion in the volume of computer network data and related application developments. Intrusion detection is one of the demanding applications of ImDC. The proposed study focusses on imbalanced intrusion benchmark data set, KDD data set and other benchmark data set with the proposed IRFCETF approach. IRFCETF justifies the enriched classification performance on imbalanced data set over the existing approach. The purpose of this work is to review imbalanced data applications in numerous application areas including AI and IIoT and tuning the performance with respect to principal component analysis. This study also focusses on the out-of-bag error performance-tuning factor.

Findings

Experimental results on KDD data set shows that proposed algorithm gives enriched performance. For referred intrusion detection data set, IRFCETF classification accuracy is 99.57% and error rate is 0.43%.

Research limitations/implications

This research work extended for further improvements in classification techniques with multiple correspondence analysis (MCA); hierarchical MCA can be focussed with the use of classification models for wide range of skewed data sets.

Practical implications

The metrics enhancement is measurable and helpful in dealing with intrusion detection systems–related imbalanced applications in current application domains such as security, AI and IIoT digitization. Analytical results show improvised metrics of the proposed approach than other traditional machine learning algorithms. Thus, error-tuning parameter creates a measurable impact on classification accuracy is justified with the proposed IRFCETF.

Social implications

Proposed algorithm is useful in numerous IIoT applications such as health care, machinery automation etc.

Originality/value

This research work addressed classification metric enhancement approach IRFCETF. The proposed method yields a test set categorization for each case with error reduction mechanism.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 22 June 2022

Suvarna Abhijit Patil and Prasad Kishor Gokhale

With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network…

Abstract

Purpose

With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network and by reducing the latency of transmitted data. The communications in IIoT and Industry 4.0 requires handshaking of multiple technologies for supporting heterogeneous networks and diverse protocols. IIoT applications may gather and analyse sensor data, allowing operators to monitor and manage production systems, resulting in considerable performance gains in automated processes. All IIoT applications are responsible for generating a vast set of data based on diverse characteristics. To obtain an optimum throughput in an IIoT environment requires efficiently processing of IIoT applications over communication channels. Because computing resources in the IIoT are limited, equitable resource allocation with the least amount of delay is the need of the IIoT applications. Although some existing scheduling strategies address delay concerns, faster transmission of data and optimal throughput should also be addressed along with the handling of transmission delay. Hence, this study aims to focus on a fair mechanism to handle throughput, transmission delay and faster transmission of data. The proposed work provides a link-scheduling algorithm termed as delay-aware resource allocation that allocates computing resources to computational-sensitive tasks by reducing overall latency and by increasing the overall throughput of the network. First of all, a multi-hop delay model is developed with multistep delay prediction using AI-federated neural network long–short-term memory (LSTM), which serves as a foundation for future design. Then, link-scheduling algorithm is designed for data routing in an efficient manner. The extensive experimental results reveal that the average end-to-end delay by considering processing, propagation, queueing and transmission delays is minimized with the proposed strategy. Experiments show that advances in machine learning have led to developing a smart, collaborative link scheduling algorithm for fairness-driven resource allocation with minimal delay and optimal throughput. The prediction performance of AI-federated LSTM is compared with the existing approaches and it outperforms over other techniques by achieving 98.2% accuracy.

Design/methodology/approach

With an increase of IoT devices, the demand for more IoT gateways has increased, which increases the cost of network infrastructure. As a result, the proposed system uses low-cost intermediate gateways in this study. Each gateway may use a different communication technology for data transmission within an IoT network. As a result, gateways are heterogeneous, with hardware support limited to the technologies associated with the wireless sensor networks. Data communication fairness at each gateway is achieved in an IoT network by considering dynamic IoT traffic and link-scheduling problems to achieve effective resource allocation in an IoT network. The two-phased solution is provided to solve these problems for improved data communication in heterogeneous networks achieving fairness. In the first phase, traffic is predicted using the LSTM network model to predict the dynamic traffic. In the second phase, efficient link selection per technology and link scheduling are achieved based on predicted load, the distance between gateways, link capacity and time required as per different technologies supported such as Bluetooth, Wi-Fi and Zigbee. It enhances data transmission fairness for all gateways, resulting in more data transmission achieving maximum throughput. Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation.

Findings

Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation. It also shows that AI- and IoT-federated devices can communicate seamlessly over IoT networks in Industry 4.0.

Originality/value

The concept is a part of the original research work and can be adopted by Industry 4.0 for easy and seamless connectivity of AI and IoT-federated devices.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

27

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 13