Search results

1 – 10 of 17
Article
Publication date: 8 May 2024

Hossa F. Al-Shareef, Ahmed M. Yousif, Rafaat Eleisawy, Ammar M. Mahmoud and Hamada Abdelwahab

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid…

Abstract

Purpose

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid and evaluating their anticorrosive properties compared with those of unmodified alkyd coatings for steel protection.

Design/methodology/approach

Short, medium and long oil alkyds, which represented as (0, 10, 20 and 30% excess-OH) according to the resin constants (Patton, 1962), were prepared through a condensation polymerization reaction via a solvent process in a one-step reaction. The modification of alkyd was carried out by using DCBTGA as a source of dicarboxylic acid. The prepared modified alkyd was confirmed by IR and NMR spectral analysis. The physicochemical, mechanical and anticorrosion performance properties of the considered modified coating formulations against unmodified blank coating were studied to confirm their application efficiency.

Findings

The best results in terms of physicochemical, mechanical and anticorrosion performance properties were found according to the following of this order activity: 30 replacements of the modifier (DCBTGA) for each hydroxyl continent were 30% Ex-OH > 20% Ex-OH > 10% Ex-OH > 0% Ex-OH, compared with that formulation containing unmodified alkyd, especially with increasing the modifier percent.

Originality/value

The prepared DCBTGA-modified resins can be used for different applications based on the type of alkyd and application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 September 2022

Nader L. Labib, Fouad Zahran, Mohamed Adel Youssef, Azza M. Mazrouaa and Manal Gamal Mohamed

This study aims to extend the pot life without altering the qualities and performance of the coating, which is important to increase when manufacturing polyurethane coatings.

Abstract

Purpose

This study aims to extend the pot life without altering the qualities and performance of the coating, which is important to increase when manufacturing polyurethane coatings.

Design/methodology/approach

An acrylic polyol from a mixture of different monomers of hydroxypropyl methacrylate, methacrylic acid, 2-ethylhexyl acrylate, methyl methacrylate and n-butyl methacrylate was prepared with different ratios of 2,4-pentanedione as a pot life extender. The reaction takes place in presence of di-tert-butyl peroxide as initiator with samples (T1–T7). The physical properties of prepared acrylic polyol were characterized. Then, coating polyurethane varnish was prepared from the prepared acrylic polyol with an aliphatic polyisocyanate in a 1:1 equivalent ratio of OH:NCO at room temperature, in presence of paint thinner (diluents/solvent) and dibutyltin dilaurate as a catalyst to give samples (T1C–T7C). This coating was evaluated via Fourier-transform infrared spectroscopy, drying time, hardness and gloss, distinctness of image and reflected image quality.

Findings

The coating has a prolonged pot life while still maintaining the other qualities, thanks to the greater 2,4-pentanedione content.

Originality/value

It is desired to have a paint which has a satisfactory pot life, short curing time and reduces many drawbacks such as inefficient working and deterioration of the paint before application.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 March 2024

Mostafa Abdel-Hamied, Ahmed A.M. Abdelhafez and Gomaa Abdel-Maksoud

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Abstract

Purpose

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Design/methodology/approach

For each material, chemical structure, chemical composition, molecular formula, solubility, advantages, disadvantages and its role in treatment process are presented.

Findings

This study concluded that carboxy methyl cellulose, hydroxy propyl cellulose, methyl cellulose, cellulose acetate, nanocrystalline cellulose, funori, sturgeon glue, poly vinyl alcohol, chitosan, chitosan nanoparticles (NPs), gelatin, aquazol, paraloid B72 and hydroxyapatite NPs were the most common and important materials used for the consolidation of illuminated paper manuscripts. For the leather bindings, hydroxy propyl cellulose, polyethylene glycol, oligomeric melamine-formaldehyde resin, acrylic wax SC6000, pliantex, paraloid B67 and B72, silicone oil and collagen NPs are the most consolidants used.

Originality/value

Illuminated paper manuscripts with leather binding are considered one of the most important objects in libraries, museums and storehouses. The uncontrolled conditions and other deterioration factors inside the libraries and storehouses lead to degradation of these artifacts. The brittleness, fragility and weakness are considered the most common deterioration aspects of illuminated paper manuscripts and leather binding. Therefore, the consolidation process became vital and important to solve this problem. This study presents the main materials used for consolidation process of illuminated paper manuscripts and leather bindings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 31 August 2022

Douglas Aghimien, Matthew Ikuabe, Lerato Millicent Aghimien, Clinton Aigbavboa, Ntebo Ngcobo and Jonas Yankah

The importance of robotics and automation (R&A) in delivering a safe built environment cannot be overemphasised. This is because R&A systems can execute a hazardous job function…

1229

Abstract

Purpose

The importance of robotics and automation (R&A) in delivering a safe built environment cannot be overemphasised. This is because R&A systems can execute a hazardous job function that the construction workforce may not execute. Based on this knowledge, this study aims to present the result of an assessment of the impediments to the deployment of R&A for a safe and healthy construction environment.

Design/methodology/approach

This study adopted a post-positivist philosophical stance, using a quantitative research approach and a questionnaire administered to construction professionals in South Africa. The data gathered were analysed using frequency, percentage, mean item score, Kruskal–Wallis H-test, exploratory factor analysis and partial least square structural equation modelling (SEM).

Findings

This study revealed that the impediments to the deployment of R&A could be grouped into: industry, technology, human and cost-related factors. However, SEM assessment showed that only the industry, human and cost-related factors would significantly impact attaining specific health and safety-related outcomes.

Practical implications

The findings offer valuable benefits to construction organisations as the careful understanding of the identified impeding factors can help lead to better deployment of R&A and the attainment of its inherent safety benefits.

Originality/value

This study attempts to fill the gap in the shortage of literature exploring the deployment of R&A for a safe construction environment, particularly in developing countries like South Africa, where such studies are non-existent. This paper, therefore, offers a theoretical backdrop for future works on R&A deployment, particularly in developing countries where such a study has not been explored.

Details

Journal of Facilities Management , vol. 22 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 August 2022

Wanting Zhao and Lijun Chen

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties…

Abstract

Purpose

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties, which make the polymer be widely used in coatings, dyes, adhesives and other products. The purpose of this study is to prepare self-crosslinked long fluorocarbon acrylate polymer latex via semi-continuous seeded emulsion technology and carry out comparative study on two different cross-linked monomers.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate (BA) were used as the main monomers, dodecafluoroheptyl methacrylate (DFMA) as the fluoromonomer, hydroxypropyl methacrylate (HPMA) and N-methylol acrylamide (NMA) as cross-linked monomers, and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether (ANPEO10) and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) as compound emulsifiers via the semicontinuous-seeded emulsion polymerization.

Findings

The properties of the polymer emulsions, which are prepared with two different cross-linked monomers, are compared and discussed, and it is concluded that HPMA is more suitable for the preparation of self-crosslinked polymer emulsions. The formula of the polymer latex is ANPEO10: DNS-86 = 1:1, and the mass ratio of the monomers used in the polymer is MMA: BA: DFMA: HPMA = 14.40:14.40:0.60:0.60.

Practical implications

Self-crosslinked long fluorocarbon acrylate polymer latex can be used in many fields such as coatings, dyes, adhesives and other products.

Originality/value

The self-crosslinked long fluorocarbon acrylate polymer latex is prepared by mixing the nonionic emulsifier ANPEO10 and the anionic emulsifier DNS-86 when potassium persulfate is used as the thermal decomposition initiator and the semicontinuous-seeded emulsion technology is adopted and the comparative study on two different cross-linked monomer is carried out, which is not reported in the open literatures.

Abstract

Details

Implementing Trauma-informed Pedagogies for School Change: Shifting Schools from Reactive to Proactive
Type: Book
ISBN: 978-1-83797-000-1

Article
Publication date: 27 February 2024

Valery Yakubovsky and Kateryna Zhuk

This study aims to provide a comprehensive analysis of various approaches to the residential property market evolution modelling and to examine the macroeconomic fundamentals that…

Abstract

Purpose

This study aims to provide a comprehensive analysis of various approaches to the residential property market evolution modelling and to examine the macroeconomic fundamentals that have shaped this market development in Ukraine in recent years.

Design/methodology/approach

The study uses a comprehensive data set encompassing relevant macroeconomic indicators and historical apartment prices. Multifactor linear regression (MLR) and ridge regression (RR) models are constructed to identify the impact of multiple predictors on apartment prices. Additionally, the ARIMAX model integrates time series analysis and external factors to enhance modelling and forecasting accuracy.

Findings

The investigation reveals that MLR and RR yield accurate predictions by considering a range of influential variables. The hybrid ARIMAX model further enhances predictive performance by fusing external indicators with time series analysis. These findings underscore the effectiveness of a multidimensional approach in capturing the complexity of housing price dynamics.

Originality/value

This research contributes to the real estate modelling and forecasting literature by providing an analysis of multiple linear regression, RR and ARIMAX models within the specific context of property price prediction in the turbulent Ukrainian real estate market. This comprehensive analysis not only offers insights into the performance of these methodologies but also explores their adaptability and robustness in a market characterized by evolving dynamics, including the significant influence of external geopolitical factors.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

1 – 10 of 17