Search results

1 – 10 of 15
Open Access
Article
Publication date: 15 August 2024

Nükhet Taylor and Sean T. Hingston

Fueled by the soaring popularity of the digital medium, consumers are increasingly relying on dynamic images to inform their decisions. However, little is known about how changes…

Abstract

Purpose

Fueled by the soaring popularity of the digital medium, consumers are increasingly relying on dynamic images to inform their decisions. However, little is known about how changes in the presentation of movement impacts these decisions. The purpose of this paper is to document whether and how movement speed–a fundamental characteristic of dynamic images in the digital medium–influences consumers' risk judgments and subsequent decisions.

Design/methodology/approach

Three experimental studies investigate the impact of movement speed displayed in the digital medium, focusing on different risk-laden domains including health (pilot study), gambling (Study 1) and stock market decisions (Study 2).

Findings

The authors find that faster movement speed displayed in the digital medium elevates consumers’ feelings of risk and elicits cautionary actions in response. The authors reveal a mechanism for this effect, showing that faster movement reduces feelings of control over outcomes, which predicts greater feelings of risk.

Research limitations/implications

Future work could expand upon these findings by systematically examining whether certain individuals are more susceptible to movement speed effects in the digital medium. Research could also investigate whether different ways of experiencing movement speed (e.g. physical movement) similarly influence risk judgments and whether movement speed can have positive connotations outside of risky domains.

Practical implications

The authors offer important insights to marketing practitioners and public policymakers seeking to guide consumers’ judgments and decisions in risk-laden contexts through the digital medium.

Originality/value

By showing how movement speed alters judgments in risk-laden contexts, the authors contribute to literature on risk perception and the growing body of literature examining how moving images shape consumers’ behaviors.

Details

European Journal of Marketing, vol. 58 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 14 June 2024

Jie Wu, Kang Wang, Ming Zhang, Leilei Guo, Yongpeng Shen, Mingjie Wang, Jitao Zhang and Vaclav Snasel

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge…

Abstract

Purpose

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge computational complexity. The notable feature of CPHES machine is the symmetric range of field-strengthening and field-weakening, but this type of machine is destined to be equipped with a complex electromagnetic structure. The purpose of this paper is to propose a hybrid analysis method to quickly and accurately solve the cogging torque of complex 3D electromagnetic structure, which is applicable to CPHES machine with different magnetic pole shapings.

Design/methodology/approach

In this paper, a hybrid method for calculating the cogging torque of CPHES machine is proposed, which considers three commonly used pole shapings. Firstly, through magnetic field analysis, the complex 3D finite element analysis (FEA) is simplified to 2D field computing. Secondly, the discretization method is used to obtain the distribution of permeance and permeance differential along the circumference of the air-gap, taking into account the effect of slots. Finally, the cogging torque of the whole motor is obtained by using the idea of modular calculation and the symmetry of the rotor structure.

Findings

This method is applicable to different pole shapings. The experimental results show that the proposed method is consistent with 3D FEA and experimental measured results, and the average calculation time is reduced from 8 h to 4 min.

Originality/value

This paper proposes a new concept for calculating cogging torque, which is a hybrid calculation of dimension reduction and discretization modules. Based on magnetic field analysis, the 3D problem is simplified into a 2D issue, reducing computational complexity. Based on the symmetry of the machine structure, a modeling method for discretized analytical models is proposed to calculate the cogging torque of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 August 2024

He Cheng, Fandi Lin, Jing Wu and Tong Zhang

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Abstract

Purpose

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Design/methodology/approach

Flux harmonics and torque characteristics are analyzed by using finite element analysis. First, a suitable pole-slot combination is selected by comparison. Second, field modulation processes of DSPMHV machine are analyzed to identify the reason for high torque density. And it is compared with dual-side-PM (DSPM) machine to analyze flux harmonic and verify the flux concentrating effect of the Halbach array.

Findings

The permanent magnet (PM) field of the DSPM machine is approximately equal to the superposition of stator-PM field and rotor-PM field, which is the reason for high torque density. And the Halbach array can reduce flux leakage and increase the amplitude of main flux harmonics, then further improves torque. Improvement of torque can be achieved by choosing right pole-slot combination, adopting DSPM machine structure, reducing flux leakage and adopting field modulation principle.

Originality/value

The DSPMHV machine with split-tooth is proposed in this paper by combining the Halbach array with DSPM structure. This paper analyzes the bidirectional field modulation process, the reason for high torque density of the DSPM machine is obtained. Comparison with the DSPM machine verifies the flux concentrating effect of Halbach array. To alleviate the magnetic saturation in part of stator teeth, this paper proposes an improved DSPMHV machine with shaped auxiliary magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2024

Ruipan Lu, Zhangqi Liu, Xiping Liu, Baoyu Sun and Jiangwei Liang

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims…

Abstract

Purpose

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims to propose an intensifying-flux hybrid excitation PM machine. It is possible to adjust the air gap magnetic field by adjusting the field current in the excitation winding, thereby increasing the torque output capability and speed range of the machine.

Design/methodology/approach

First, a novel intensifying-flux hybrid excited permanent magnet synchronous machine (IF-HEPMSM) is proposed on the basis of intensifying-flux permanent magnet synchronous machine (IF-PMSM) and an equivalent magnetic circuit model is established. Second, the tooth width and yoke thickness of the machine stator are optimized to ensure the overload capacity of the machine while effectively improving the wide flux regulation range. Furthermore, the electromagnetic characteristics of the IF-HEPMSM are investigated and compared with the IF-PMSM and conventional permanent magnet synchronous machine (PMSM) by using finite element simulations.

Findings

The id of IF-HEPMSM and IF-PMSM is greater than zero low-speed magnetizing current. And the flux-weakening current of the IF-HEPMSM is 18% and 3% smaller than of the conventional PMSM and IF-PMSM.

Practical implications

Aiming at the problems of IF-PMSM applied to electric vehicles, this paper proposes an IF-HEPMSM. The air gap magnetic field is adjusted by controlling the current of the excitation winding to improve the reliability of the machine. Therefore, the IF-HEPMSM combines the advantages of high-power density and high efficiency of the PMSM and the controllable magnetic field of the electro-excitation machine, which is of great engineering value when applied in the field of electric vehicles.

Originality/value

The proposed IF-HEPMSM offers better flux regulation capability with electromagnetic characteristics analysis and maps of dq-axis current as compared to IF-PMSM and conventional PMSM. Moreover, the improvement of the torque can make up for the shortcomings of the insufficient torque output capability of the IF-PMSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 August 2024

Xiaobao Chai, Jinglin Liu, RuiZhi Guan and Minglang Xiao

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid…

Abstract

Purpose

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid stepping machine (DPMEHSM) with tangential and radial magnetization.

Design/methodology/approach

First, the structure of DPMEHSM is introduced and its operation principle is analyzed by describing the variation in stator poles versus time. Second, based on the similar electrical load and amount of PM, the size equations of the DPMEHSM are designed and the main parameters are presented. Third, the electromagnetic performances including the PM flux linkage distribution, magnetic density distribution, air-gap field, back electromotive force (back-EMF), detent torque, holding torque and output torque of DPMEHSM and stator-PM hybrid stepping machine (SPMHSM) are analyzed based on the finite element method.

Findings

The results show that the DPMEHSM has superiority in back-EMF, holding torque and output torque.

Originality/value

This paper proposes a DPMEHSM with tangential and radial magnetization to improve the output torque density.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 August 2024

Brahim Ladghem-Chikouche, Lazhar Roubache, Kamel Boughrara, Frédéric Dubas, Zakarya Djelloul-Khedda and Rachid Ibtiouen

The purpose of this study is to present a novel extended hybrid analytical method (HAM) that leverages a two-dimensional (2-D) coupling between the semi-analytical Maxwell–Fourier…

Abstract

Purpose

The purpose of this study is to present a novel extended hybrid analytical method (HAM) that leverages a two-dimensional (2-D) coupling between the semi-analytical Maxwell–Fourier analysis and the finite element method (FEM) in Cartesian coordinates.

Design/methodology/approach

The proposed model is applied to flat permanent-magnet linear electrical machines with rotor-dual. The magnetic field solution across the entire machine is established by coupling an exact analytical model (AM), designed for regions with relative magnetic permeability equal to unity, with a FEM in ferromagnetic regions. The coupling between AM and FEM occurs bidirectionally (x, y) along the edges separating teeth regions and their adjacent regions through applied boundary conditions.

Findings

The developed HAM yields accurate results concerning the magnetic flux density distribution, cogging force and induced voltage under various operating conditions, including magnetic or geometric parameters. A comparison with hybrid finite-difference and hybrid reluctance network methods demonstrates very satisfactory agreement with 2-D FEM.

Originality/value

The original contribution of this paper lies in establishing a direct coupling between the semi-analytical Maxwell–Fourier analysis and the FEM, particularly at the interface between adjacent regions with differing magnetic parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 9 May 2024

Sadi Seyama-Mokhaneli

This paper draws on African anti-colonial thought and Black consciousness to propose critical conscious leadership (CCL) as a decolonising leadership approach appropriate for…

Abstract

Purpose

This paper draws on African anti-colonial thought and Black consciousness to propose critical conscious leadership (CCL) as a decolonising leadership approach appropriate for pursuing emancipation, social justice and innovation in a new African university.

Design/methodology/approach

I utilised the method of critical discourse analysis to study Ihron Rensburg’s language as he reflected on his leadership at the University of Johannesburg (UJ). The study engaged with Rensburg’s writings and texts on his account of leading the merger and transformation of UJ. The primary text draws from his book “Serving Higher Purposes” (2020).

Findings

Through the construction of CCL, the paper proposes alternative tenets for leading transformation towards a new African university. CCL grounds a decolonised and pluriversal new African university’s character premised on a consciously revitalised alternative thinking that will carry the communitarian spirit of Africa in knowledge production, dissemination and consumption in humanising all and serving the greater good. And it operates within the dialectical tensions of the social and economic purpose of higher education (HE), African and global relevance, African and Western paradigms, excellent performance and attainment of social justice.

Originality/value

The proposed CCL offers an alternative leadership approach that responds to the call to “Dethrone the Empire” by centring Blackness in HE leadership, which is crucial for authentic transformation and decolonisation.

Details

Equality, Diversity and Inclusion: An International Journal, vol. 43 no. 9
Type: Research Article
ISSN: 2040-7149

Keywords

Open Access
Article
Publication date: 11 September 2024

Lindsey Bezek and Kwan-Soo Lee

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing…

Abstract

Purpose

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing the post-process, particularly sintering, conditions to consistently produce geometrically accurate and mechanically robust parts. This study aims to investigate how sintering temperature affects feature resolution and flexural properties of silica-based parts formed by vat photopolymerization (VPP) AM.

Design/methodology/approach

Test artifacts were designed to evaluate features of different sizes, shapes and orientations, and three-point bend specimens printed in multiple orientations were used to evaluate mechanical properties. Sintering temperatures were varied between 1000°C and 1300°C.

Findings

Deviations from designed dimensions often increased with higher sintering temperatures and/or larger features. Higher sintering temperatures yielded parts with higher strength and lower strain at break. Many features exhibited defects, often dependent on geometry and sintering temperature, highlighting the need for further analysis of debinding and sintering parameters.

Originality/value

To the best of the authors’ knowledge, this is the first time test artifacts have been designed for ceramic VPP. This work also offers insights into the effect of sintering temperature and print orientation on flexural properties. These results provide design guidelines for a particular material, while the methodology outlined for assessing feature resolution and flexural strength is broadly applicable to other ceramics, enabling more predictable part performance when considering the future design and manufacture of complex ceramic parts.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

850

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 June 2023

Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…

Abstract

Purpose

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).

Design/methodology/approach

Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.

Findings

The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.

Originality/value

The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last week (15)

Content type

Article (15)
1 – 10 of 15