Search results

1 – 10 of 124
Article
Publication date: 3 April 2023

Sadiya Naaz, Mangey Ram and Akshay Kumar

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Design/methodology/approach

Although, a variety of methodologies have been used to assess the refrigeration system's reliability function that has proven to be effective, the universal generating function approach is the basis of this research study, which is used in the calculation of a domestic refrigeration system with four separate components that are related in series and parallel with a corresponding sample to form a complex machine.

Findings

In this paper, signature reliability of the refrigeration system has been evaluated with the universal generating function technique. There are four components present in the proposed system in complex (series and parallel) manner. The tail signature, signature, Barlow–Proschan index, expected lifetime and expected cost of independent identically distributed are all computed.

Originality/value

This is the first study of domestic refrigeration system to examine the signature reliability with the help of universal generating function techniques with various measures. Refrigeration systems are an essential process in industries and home applications as they perform cooling or the maintain temperature at the desired value. A cycle of refrigeration consists of four main components such as, heat exchange, compression and expansion with a refrigerant flowing through the units within the cycle.

Article
Publication date: 21 August 2023

Gleb Glukhov, Ivan Derevitskii, Oksana Severiukhina and Klavdiya Bochenina

Using the data set about the restaurants from different countries and their customer's feedback, the purpose of this paper is to address the following issues: in the restaurant…

Abstract

Purpose

Using the data set about the restaurants from different countries and their customer's feedback, the purpose of this paper is to address the following issues: in the restaurant industry, how have user behavior and preferences changed during the COVID-19 restrictions period, how did these changes influence the performance of recommendation algorithms and which methods can be proposed to improve the quality of restaurant recommendations in a lockdown scenario.

Design/methodology/approach

To assess changes in user behavior and preferences, quantitative and qualitative data analysis was performed to assess the changes in user behavior and preferences. The authors compared the situation before and during the COVID-19 restrictions period. To evaluate the performance of restaurant recommendation systems in a non-stationary setting, the authors tested state-of-the-art collaborative filtering algorithms. This study proposes and investigates a filtering-based approach to improve the quality of recommendation algorithms for a lockdown scenario.

Findings

This study revealed that during the COVID-19 restrictions period, the average rating values and the number of reviews have changed. The experimental study confirmed that: the performance of all state-of-the-art recommender systems for the restaurant industry has significantly degraded during the COVID-19 restrictions period; and the accuracy and the stability of restaurant recommendations in non-stationary settings may be improved using the sliding window and post-filtering methods.

Practical implications

The authors propose two novel methods: the sliding window and closed restaurants post-filtering method based on the CatBoost classification model. These methods can be applied to classical collaborative recommender algorithms and increase the value of metrics under non-stationary conditions. These methods can be helpful for developers of recommender systems and massive aggregators of restaurants and hotels. Thus, it benefits both the app end-user and business owners because users honestly rate restaurants when they receive good recommendations and do not downgrade because of external factors.

Originality/value

To the best of the authors’ knowledge, this paper provides the first extensive and multifaceted experimental study of the impact of COVID-19 restrictions on the effectiveness of restaurant recommendation systems in different countries. Two novel methods to tackle restaurant recommendations' performance degradation are proposed and validated.

研究目的

利用关于不同国家餐厅及其顾客反馈的数据, 我们探索了以下问题:(i) 在餐饮行业, 用户行为和偏好在COVID-19限制期间如何改变, (ii) 这些变化如何影响推荐算法的性能, 以及 (iii) 可以提出哪些方法来改进封锁情景下的餐厅推荐质量。

研究方法

为了评估用户行为和偏好的变化, 本研究进行了定量和定性数据分析, 对比了COVID-19限制期前后的情况。为了评估非稳态环境中餐厅推荐系统的性能, 我们测试了最先进的协同过滤算法。我们提出并研究了一种基于过滤的方法, 以提高封锁情景下推荐算法的质量。

研究发现

研究发现, 在COVID-19限制期间, 平均评分和评论数量发生了变化。实验研究证实:(i) 在COVID-19限制期间, 所有最先进的餐厅行业推荐系统的性能显著下降; (ii) 使用滑动窗口和后过滤方法可以改进非稳态环境下餐厅推荐的准确性和稳定性。

实践意义

我们提出了两种新方法:基于CatBoost分类模型的关闭餐厅后过滤和滑动窗口方法。这些方法可以应用于经典的协同过滤推荐算法, 并在非稳态条件下提高指标值。这些方法对于推荐系统的开发者和大规模餐厅和酒店聚合平台都有帮助。因此, 这对于应用的最终用户和企业主都有好处, 因为当用户得到良好的推荐时, 他们会诚实地对餐厅进行评价, 而不会因为外部因素降低评分。

研究创新

本文首次提供了COVID-19限制对不同国家餐厅推荐系统有效性影响的广泛多方面的实验研究, 并提出和验证了两种解决餐厅推荐性能下降问题的新方法。

Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 February 2024

Feng Qian, Yongsheng Tu, Chenyu Hou and Bin Cao

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods…

Abstract

Purpose

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods based on deep learning have been proposed, the methods proposed by these works cannot be directly applied to the actual wireless communication scenario, because there are usually two kinds of dilemmas when recognizing the real modulated signal, namely, long sequence and noise. This paper aims to effectively process in-phase quadrature (IQ) sequences of very long signals interfered by noise.

Design/methodology/approach

This paper proposes a general model for a modulation classifier based on a two-layer nested structure of long short-term memory (LSTM) networks, called a two-layer nested structure (TLN)-LSTM, which exploits the time sensitivity of LSTM and the ability of the nested network structure to extract more features, and can achieve effective processing of ultra-long signal IQ sequences collected from real wireless communication scenarios that are interfered by noise.

Findings

Experimental results show that our proposed model has higher recognition accuracy for five types of modulation signals, including amplitude modulation, frequency modulation, gaussian minimum shift keying, quadrature phase shift keying and differential quadrature phase shift keying, collected from real wireless communication scenarios. The overall classification accuracy of the proposed model for these signals can reach 73.11%, compared with 40.84% for the baseline model. Moreover, this model can also achieve high classification performance for analog signals with the same modulation method in the public data set HKDD_AMC36.

Originality/value

At present, although many AMR methods based on deep learning have been proposed, these works are based on the model’s classification results of various modulated signals in the AMR public data set to evaluate the signal recognition performance of the proposed method rather than collecting real modulated signals for identification in actual wireless communication scenarios. The methods proposed in these works cannot be directly applied to actual wireless communication scenarios. Therefore, this paper proposes a new AMR method, dedicated to the effective processing of the collected ultra-long signal IQ sequences that are interfered by noise.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 15 May 2023

Dongsheng Li and Jun Li

Minimizing the impact on the surrounding environment and maximizing the use of production raw materials while ensuring that the relevant processes and services can be delivered…

Abstract

Purpose

Minimizing the impact on the surrounding environment and maximizing the use of production raw materials while ensuring that the relevant processes and services can be delivered within the specified time are the contents of enterprise supply chain management in the green financial system.

Design/methodology/approach

With the continuous development of China's economy and the continuous deepening of the concept of sustainable development, how to further upgrade the enterprise supply chain management is an urgent need to solve. How to maximize the utilization of resources in the supply chain needs to be realized from the whole process of raw material purchase, transportation and processing.

Findings

It was proved that digital twin technology had a partial intermediary role in the role of supply chain big data analysis capability on corporate finance, market, operation and other performance.

Originality/value

This paper focused on describing how digital twin technology could be applied to big data analysis of enterprise supply chain under the green financial system and proved its usability through experiments. The experimental results showed that the indirect effect of the path big data analysis capability digital twin technology enterprise financial performance was 0.378. The indirect effect of the path big data analysis capability digital twin technology enterprise market performance was 0.341. The indirect effect of the path big data analysis capability digital twin technology enterprise operational performance was 0.374.

Details

Kybernetes, vol. 53 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 August 2023

Guo Huafeng, Xiang Changcheng and Chen Shiqiang

This study aims to reduce data bias during human activity and increase the accuracy of activity recognition.

Abstract

Purpose

This study aims to reduce data bias during human activity and increase the accuracy of activity recognition.

Design/methodology/approach

A convolutional neural network and a bidirectional long short-term memory model are used to automatically capture feature information of time series from raw sensor data and use a self-attention mechanism to learn select potential relationships of essential time points. The proposed model has been evaluated on six publicly available data sets and verified that the performance is significantly improved by combining the self-attentive mechanism with deep convolutional networks and recursive layers.

Findings

The proposed method significantly improves accuracy over the state-of-the-art method between different data sets, demonstrating the superiority of the proposed method in intelligent sensor systems.

Originality/value

Using deep learning frameworks, especially activity recognition using self-attention mechanisms, greatly improves recognition accuracy.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 March 2024

Gang Yu, Zhiqiang Li, Ruochen Zeng, Yucong Jin, Min Hu and Vijayan Sugumaran

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due…

48

Abstract

Purpose

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due to limitations in utilizing heterogeneous sensing data and domain knowledge as well as insufficient generalizability resulting from limited data samples. This paper integrates implicit and qualitative expert knowledge into quantifiable values in tunnel condition assessment and proposes a tunnel structure prediction algorithm that augments a state-of-the-art attention-based long short-term memory (LSTM) model with expert rating knowledge to achieve robust prediction results to reasonably allocate maintenance resources.

Design/methodology/approach

Through formalizing domain experts' knowledge into quantitative tunnel condition index (TCI) with analytic hierarchy process (AHP), a fusion approach using sequence smoothing and sliding time window techniques is applied to the TCI and time-series sensing data. By incorporating both sensing data and expert ratings, an attention-based LSTM model is developed to improve prediction accuracy and reduce the uncertainty of structural influencing factors.

Findings

The empirical experiment in Dalian Road Tunnel in Shanghai, China showcases the effectiveness of the proposed method, which can comprehensively evaluate the tunnel structure condition and significantly improve prediction performance.

Originality/value

This study proposes a novel structure condition prediction algorithm that augments a state-of-the-art attention-based LSTM model with expert rating knowledge for robust prediction of structure condition of complex projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 23 July 2020

Rami Mustafa A. Mohammad

Spam emails classification using data mining and machine learning approaches has enticed the researchers' attention duo to its obvious positive impact in protecting internet…

2012

Abstract

Spam emails classification using data mining and machine learning approaches has enticed the researchers' attention duo to its obvious positive impact in protecting internet users. Several features can be used for creating data mining and machine learning based spam classification models. Yet, spammers know that the longer they will use the same set of features for tricking email users the more probably the anti-spam parties might develop tools for combating this kind of annoying email messages. Spammers, so, adapt by continuously reforming the group of features utilized for composing spam emails. For that reason, even though traditional classification methods possess sound classification results, they were ineffective for lifelong classification of spam emails duo to the fact that they might be prone to the so-called “Concept Drift”. In the current study, an enhanced model is proposed for ensuring lifelong spam classification model. For the evaluation purposes, the overall performance of the suggested model is contrasted against various other stream mining classification techniques. The results proved the success of the suggested model as a lifelong spam emails classification method.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 6 February 2024

Nazanin Eisazadeh, Frank De Troyer and Karen Allacker

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the…

Abstract

Purpose

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the building/space. This study focuses on the performance of windows in patient rooms hosting less mobile people.

Design/methodology/approach

This study investigates the life cycle environmental impacts of different glazing types, window frames and fire safety doors at the product level. This article also presents a building-integrated environmental analysis of patient rooms that considers the multiple functionalities of windows by incorporating dynamic energy analysis, comfort and daylighting performance with a life cycle assessment (LCA) study.

Findings

The results indicate that the amount of flat glass is the main contributor to the environmental impacts of the glazing units. As for the patient rooms, global warming shows the most significant contribution to the environmental costs, followed by human toxicity, particulate matter formation and eutrophication. The key drivers for these impacts are production processes and operational energy use. This study highlights the significance of evaluating a wide range of criteria for assessing the performance of windows.

Originality/value

An integrated assessment approach is used to investigate the influence of windows on environmental performance by considering the link between window/design parameters and their effects on energy use/costs, daylighting, comfort and environmental impacts. The embodied impacts of different building elements and the influence of various design parameters on environmental performance are assessed and compared. The environmental costs are expressed as an external environmental cost (euro).

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 September 2022

Tulsi Pawan Fowdur and Lavesh Babooram

The purpose of this paper is geared towards the capture and analysis of network traffic using an array ofmachine learning (ML) and deep learning (DL) techniques to classify…

57

Abstract

Purpose

The purpose of this paper is geared towards the capture and analysis of network traffic using an array ofmachine learning (ML) and deep learning (DL) techniques to classify network traffic into different classes and predict network traffic parameters.

Design/methodology/approach

The classifier models include k-nearest neighbour (KNN), multilayer perceptron (MLP) and support vector machine (SVM), while the regression models studied are multiple linear regression (MLR) as well as MLP. The analytics were performed on both a local server and a servlet hosted on the international business machines cloud. Moreover, the local server could aggregate data from multiple devices on the network and perform collaborative ML to predict network parameters. With optimised hyperparameters, analytical models were incorporated in the cloud hosted Java servlets that operate on a client–server basis where the back-end communicates with Cloudant databases.

Findings

Regarding classification, it was found that KNN performs significantly better than MLP and SVM with a comparative precision gain of approximately 7%, when classifying both Wi-Fi and long term evolution (LTE) traffic.

Originality/value

Collaborative regression models using traffic collected from two devices were experimented and resulted in an increased average accuracy of 0.50% for all variables, with a multivariate MLP model.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 124