Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 27 October 2021

Luca Possidente, Nicola Tondini and Jean-Marc Battini

Buckling should be carefully considered in steel assemblies with members subjected to compressive stresses, such as bracing systems and truss structures, in which angles and…

Abstract

Purpose

Buckling should be carefully considered in steel assemblies with members subjected to compressive stresses, such as bracing systems and truss structures, in which angles and built-up steel sections are widely employed. These type of steel members are affected by torsional and flexural-torsional buckling, but the European (EN 1993-1-2) and the American (AISC 360-16) design norms do not explicitly treat these phenomena in fire situation. In this work, improved buckling curves based on the EN 1993-1-2 were extended by exploiting a previous work of the authors. Moreover, new buckling curves of AISC 360-16 were proposed.

Design/methodology/approach

The buckling curves provided in the norms and the proposed ones were compared with the results of numerical investigation. Compressed angles, tee and cruciform steel members at elevated temperature were studied. More than 41,000 GMNIA analyses were performed on profiles with different lengths with sections of class 1 to 3, and they were subjected to five uniform temperature distributions (400–800 C) and with three steel grades (S235, S275, S355).

Findings

It was observed that the actual buckling curves provide unconservative or overconservative predictions for various range of slenderness of practical interest. The proposed curves allow for safer and more accurate predictions, as confirmed by statistical investigation.

Originality/value

This paper provides new design buckling curves for torsional and flexural-torsional buckling at elevated temperature since there is a lack of studies in the field and the design standards do not appropriately consider these phenomena.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 March 2016

Jean-Marc Franssen, Bin Zhao and Thomas Gernay

The purpose of this paper is to gain from experimental tests an insight into the failure mode of slender steel columns subjected to fire. The tests will also be used to validate a…

Abstract

Purpose

The purpose of this paper is to gain from experimental tests an insight into the failure mode of slender steel columns subjected to fire. The tests will also be used to validate a numerical model.

Design/methodology/approach

A series of experimental fire tests were conducted on eight full-scale steel columns made of slender I-shaped Class 4 sections. Six columns were made of welded sections (some prismatic and some tapered members), and two columns were made of hot rolled sections. The nominal length of the columns was 2.7 meters with the whole length being heated. The load was applied at ambient temperature after which the temperature was increased under constant load. The load was applied concentrically on some tests and with an eccentricity in other tests. Heating was applied by electrical resistances enclosed in ceramic pads. Numerical simulations were performed with the software SAFIR® using shell elements.

Findings

The tests have allowed determining the appropriate method of application of the electrical heating system for obtaining a uniform temperature distribution in the members. Failure of the columns during the tests occurred by combination of local and global buckling. The numerical model reproduced correctly the failure modes as well as the critical temperatures.

Originality/value

The numerical model that has been validated has been used in subsequent parametric analyses performed to derive design equations to be used in practice. This series of test results can be used by the scientific community to validate their own numerical or analytical models for the fire resistance of slender steel columns.

Details

Journal of Structural Fire Engineering, vol. 7 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 November 2021

Flávio Alexandre Matias Arrais, Nuno Lopes and Paulo Vila Real

Stainless steel has different advantages when compared to conventional carbon steel. The corrosion resistance and aesthetic appearance are the most known; however, its better…

Abstract

Purpose

Stainless steel has different advantages when compared to conventional carbon steel. The corrosion resistance and aesthetic appearance are the most known; however, its better behaviour under elevated temperatures can also be important in buildings design. In spite of the initial cost, stainless-steel application as a structural material has been increasing. Elliptical hollow sections integrate the architectural attributes of the circular hollow sections and the structural advantages of the rectangular hollow sections (RHSs). Hence, the application of stainless-steel material combined with elliptical hollow profiles stands as an interesting design option. The purpose of the paper is to better understand the resistance of stainless-steel-beam columns in case of fire

Design/methodology/approach

The research presents a numerical study on the behaviour of stainless-steel members with slender elliptical hollow section (EHS) subjected to axial compression and bending about the strong axis at elevated temperatures. A parametric numerical study is presented here considering with and without out-of-plane buckling different stainless-steel grades, cross-section and member slenderness, bending moment diagrams and elevated temperatures.

Findings

The tested design methodologies proved to be inadequate for the EHS members being in some situations too conservative.

Originality/value

The safety and accuracy of Eurocode 3 (EC3) design methodology and of a recent design proposal developed for I-sections and cold-formed RHSs are analysed applying material and geometric non-linear analysis considering imperfections with the finite element software SAFIR.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 June 2019

Chrysanthos Maraveas, Thomas Gernay and Jean-Marc Franssen

The purpose of this paper is to present an improved temperature-dependent constitutive model for steel that accounts for local instabilities of slender plates using an effective…

Abstract

Purpose

The purpose of this paper is to present an improved temperature-dependent constitutive model for steel that accounts for local instabilities of slender plates using an effective stress-based method. This model can be easily implemented for use with Bernoulli beam finite elements (FEs) in the fire situation.

Design/methodology/approach

The constitutive model is derived by calibration on parametric numerical analysis on isolated plates subject to buckling at different elevated temperatures. The model is implemented in the FE software SAFIR and validation is performed against experimental and shell element analysis results.

Findings

A constitutive model based on an equivalent stress method is proposed as an efficient way to consider local buckling in steel members exposed to fire. The proposed stress–strain–temperature relationship is asymmetric and is modified in compression only, by reducing the proportional limit, the yield stress and the strain at yield stress. The reduction of these parameters depends on the plate’s boundary conditions, slenderness and temperature. The validation of the proposed model shows good agreement over a range of profile dimensions, temperatures and steel grades.

Research limitations/implications

The model is still giving conservative results for large compressive load eccentricities. An enhanced model is under development to improve the predictive capability under large eccentricities.

Practical implications

The proposed model, easily implemented into any finite element software, allows using fibre type (Bernoulli) beam FEs for modelling structures made of slender sections. This has major practical implications as beam elements are the workhorse used for simulating the behaviour of structures in fire. This model, thus makes it possible to simulate large structures with slender steel sections at a limited computational cost.

Originality/value

The paper presents a novel steel constitutive model based on an innovative approach to capture local buckling at the material level using an equivalent stress approach. The theoretical development, validation and perspectives for future improvements are presented.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 August 1956

Svetopolk Pivko

Using the results of earlier investigations, a method for determination of the velocity or pressure distribution and the aerodynamic properties of a low‐aspect‐ratio swept wing…

Abstract

Using the results of earlier investigations, a method for determination of the velocity or pressure distribution and the aerodynamic properties of a low‐aspect‐ratio swept wing with slender body of elliptical cross‐section and vertical tail surface, having arbtrary form, is briefly presented. The method can be used for the prediction of the load distribution, aerodynamic forces and moments on inclined slender wing, body and vertical tail combinations travelling at subsonic or supersonic speeds.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 23 March 2012

Markus Knobloch, Diego Somaini, Jacqueline Pauli and Mario Fontana

The cross-sectional capacity of steel sections subjected to fire is strongly affected by the decreasing stiffness during heating and the nonlinear stress-strain relationship of…

Abstract

The cross-sectional capacity of steel sections subjected to fire is strongly affected by the decreasing stiffness during heating and the nonlinear stress-strain relationship of steel at elevated temperatures. This paper analyses the cross-sectional capacity of common steel sections subjected to combined axial compression and biaxial bending moments at both ambient and elevated temperatures considering section yielding and local buckling effects. The results of a parametric study using the finite element approach are presented as temperature-dependent normalized N-M interaction curves and are compared to results using elastic and plastic interaction formulae. A comparative study shows that European fire design models may lead to conservative results for semi-compact and slender cross sections (class 3 and 4 sections) due to the partial plastic capacity of these sections. However, for steel members predominately subjected to axial compression the design models may lead to unconservative results due to local buckling deflections that occur even for plastic and compact sections (class 1 and 2).

Details

Journal of Structural Fire Engineering, vol. 3 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 May 2023

Lucas Willian Aguiar Mattias and Leilson Joaquim Araujo

This study aims to optimize the structural design of reinforced concrete columns with variable hollow circular sections.

Abstract

Purpose

This study aims to optimize the structural design of reinforced concrete columns with variable hollow circular sections.

Design/methodology/approach

The columns were optimized according to the criteria of instability (buckling) and mechanical strength (compression and/or tensile strength). To perform the optimizations, routines are developed in Python using the penalty and sequential linearization programming (SLP) function methods to optimize the elements satisfying the buckling and stress criteria.

Findings

At the end of the optimization process, the optimal section is obtained for the example of a circular column with a variable section, this section has an average radius of 5% smaller than that initially defined.

Originality/value

The theoretical basis for column optimization and the structuring of an algorithm in Python language for the computational resolution of these problems are presented in a didactic way, as well as the comparative efficiency of the methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 May 2021

P.S. Liu and X.M. Ma

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings…

Abstract

Purpose

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings in engineering applications.

Design/methodology/approach

With the octahedral structure model proposed by the present authors themselves, the fundamentally mechanical relations have been systematically studied for reticular metal foams with open cells in their previous works. On this basis, such model theory is continually used to investigate the failure mode of this kind of porous materials under compression, bending, torsion and shearing, which are common loading forms in engineering applications.

Findings

The pore-strut of metal foams under different compressive loadings will fail in the tensile breaking mode when it is brittle. While it is ductile, it will tend to the shearing failure mode when the shearing strength is half or nearly half of the tensile strength for the corresponding dense material and to the tensile breaking mode when the shearing strength is higher than half of the tensile strength to a certain value. The failure modes of such porous materials under bending, torsional and shearing loads are also similarly related to their material species.

Originality/value

This paper presents a distinctive method to conveniently analyze and estimate the failure mode of metal foams under different loadings in engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 December 2022

Aishwarya Narang, Ravi Kumar and Amit Dhiman

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and…

Abstract

Purpose

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA).

Design/methodology/approach

Concrete-filled steel tubular (CFST) columns have gained popularity in construction in recent decades as they offer the benefit of constituent materials and cost-effectiveness. Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Gene Expression Programming (GEP) and Decision Trees (DTs) are some of the approaches that have been widely used in recent decades in structural engineering to construct predictive models, resulting in effective and accurate decision making. Despite the fact that there are numerous research studies on the various parameters that influence the axial compression capacity (ACC) of CFST columns, there is no systematic review of these Machine Learning methods.

Findings

The implications of a variety of structural characteristics on machine learning performance parameters are addressed and reviewed. The comparison analysis of current design codes and machine learning tools to predict the performance of CFST columns is summarized. The discussion results indicate that machine learning tools better understand complex datasets and intricate testing designs.

Originality/value

This study examines machine learning techniques for forecasting the axial bearing capacity of concrete-filled steel tubular (CFST) columns. This paper also highlights the drawbacks of utilizing existing techniques to build CFST columns, and the benefits of Machine Learning approaches over them. This article attempts to introduce beginners and experienced professionals to various research trajectories.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 July 2021

Fatimah De’nan, Nor Salwani Hashim, Xing Yong Sua and Pui Yee Lock

Due to economic development, tapered members are commonly applied in steel frames, namely, industrial halls, warehouses, exhibition centres, etc. In the design of cantilever steel…

Abstract

Purpose

Due to economic development, tapered members are commonly applied in steel frames, namely, industrial halls, warehouses, exhibition centres, etc. In the design of cantilever steel beam structures in cities building design, tapering is introduced at the web profile to achieve utmost economy and suit the bending moment distributions. The cross-sectional shape of the beam is varied linearly to the moment gradient to achieve the target of higher efficiency with lower cost.

Design/methodology/approach

The shear deformation pattern and efficiency of the tapered steel section with perforation were investigated using finite element analysis. In addition, I-beam with web opening is studied numerically via LUSAS software for different parameters of tapering ratio, perforation shape and perforation size and perforation layout.

Findings

The highest contributing parameters for the highest shear buckling capacity and efficiency of the section were due to the small opening size and tapering ratio. Whilst the variation of perforation layout and spacing give a major effect on the shear strength and efficiency of the tapered steel section with perforation. Besides that, the highest efficiency model is found when the section is designed with 0.4 D diamond perforation in Layout 3 under a tapering ratio of 0.3. The critical shear buckling load and efficiency is reduced 14.39% and 13.91%, respectively, when perforations are added onto the tapered steel sections.

Originality/value

The tapered steel section with perforation has lower critical shear buckling load and efficiency compared to the tapered section without perforation but obtains a higher critical shear buckling load and efficiency compared to the uniform section without perforation.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000