Search results

1 – 10 of over 2000
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6048

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3544

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2023

Yongliang Wang

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under…

Abstract

Purpose

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under different crack damage locations, sizes and numbers, and analysing the influence mechanism of crack damage on buckling instability have become the needs of theoretical research and engineering practice. Accordingly, a finite element method was developed and applied to solve the elastic buckling load and buckling mode of curved beams with crack damage. However, the accuracy of the solution depends on the quality of mesh, and the solution inevitably introduces errors due to mesh. Therefore, the adaptive mesh refinement method can effectively optimise the mesh distribution and obtain high-precision solutions.

Design/methodology/approach

For the elastic buckling of circular curved beams with cracks, the section damage defect analogy scheme of a circular arc curved beam crack was established to simulate the crack size (depth), position and number. The h-version finite element mesh adaptive analysis method of the variable section Euler–Bernoulli beam was introduced to solve the elastic buckling problem of circular arc curved beams with crack damage. The optimised mesh and high-precision buckling load and buckling mode solutions satisfying the preset error tolerance were obtained.

Findings

The results of testing typical examples show that (1) the established section damage defect analogy scheme of circular arc curved beam crack can effectively realise the simulation of crack size (depth), position and number. The solution strictly satisfies the preset error tolerance; (2) the non-uniform mesh refinement in the algorithm can be adapted to solve the arbitrary order frequencies and modes of cracked cylindrical shells under the conditions of different ring wave numbers, crack positions and crack depths; and (3) the change in the buckling mode caused by crack damage is applicable to the study of elastic buckling under various curved beam angles and crack damage distribution conditions.

Originality/value

This study can provide a novel strategy for the adaptive mesh refinement for finite element analysis of elastic buckling of circular arc curved beams with crack damage. The adaptive mesh refinement method established in this study is fundamentally different from the conventional finite element method which employs the user experience to densify the meshes near the crack. It can automatically and flexibly generate a set of optimised local meshes by iteratively dividing the fine mesh near the crack, which can ensure the high accuracy of the buckling loads and modes. The micro-crack in curved beams is also characterised by weakening the cross-sectional stiffness to realise the characterisation of locations, depths and distributions of multiple crack damage, which can effectively analyse the disturbance behaviour of different forms of micro-cracks on the dynamic behaviour of beams.

Article
Publication date: 22 December 2022

Yongliang Wang

In this paper, a superconvergent patch recovery method is proposed for superconvergent solutions of modes in the finite element post-processing stage of variable geometrical…

Abstract

Purpose

In this paper, a superconvergent patch recovery method is proposed for superconvergent solutions of modes in the finite element post-processing stage of variable geometrical Timoshenko beams. The proposed superconvergent patch recovery method improves the solution speed and accuracy of the finite element analysis of a curved beam. The free vibration and natural frequency of the beam were considered for studying forced vibrations and structural resonance. Beam vibration mode analysis was performed for high-precision vibration mode solutions and frequency values. The proposed method can be used to compute beam vibration modes of beams with different shapes and boundary conditions as well as variable cross sections and curvatures. The purpose of this paper is to address these issues.

Design/methodology/approach

An adaptive method was proposed to analyse the in-plane and out-of-plane free vibrations of the variable geometrical Timoshenko beams. In the post-processing stage of the displacement-based finite element method, the superconvergent patch recovery method and high-order shape function interpolation technique were used to obtain the superconvergent solution of mode (displacement). The superconvergent solution of mode was used to estimate the error of the finite element solution of mode in the energy form under the current mesh. Furthermore, an adaptive mesh refinement was proposed by mesh subdivision to derive an optimised mesh and accurate finite element solution to meet the preset error tolerance.

Findings

The results computed using the proposed algorithm were in good agreement with those computed using other high-precision algorithms, thus validating the accuracy of the proposed algorithm for beam analysis. The numerical analysis of parabolic curved beams, beams with variable cross sections and curvatures, elliptically curved beams and circularly curved beams helped verify that the solutions of frequencies were consistent with the results obtained using other specially developed methods. The proposed method is well suited for the mesh refinement analysis of a curved beam structure for analysing the changes in high-order vibration mode. The parts where the vibration mode changed significantly were locally densified; a relatively fine mesh division was adopted that validated the reliability of the mesh optimisation processing of the proposed algorithm.

Originality/value

The proposed algorithm can obtain high-precision vibration solutions of variable geometrical Timoshenko beams based on more optimized and reasonable meshes than the conventional finite element method. Furthermore, it can be used for vibration problems of parabolic curved beams, beams with variable cross sections and curvatures, elliptically curved beams and circularly curved beams. The proposed algorithm can be extended for application in superconvergent computation and adaptive analysis of finite element solutions of general structures and solid deformation fields and used for adaptive analysis of more complex plates, shells and three-dimensional structures. Additionally, this method can analyse the vibration and stability of curved members with crack damage to obtain high-precision vibration modes and instability modes under damage defects.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

Marcos Arndt, Roberto Dalledone Machado and Adriano Scremin

The purpose of this paper is devoted to present an accurate assessment for determine natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by an…

Abstract

Purpose

The purpose of this paper is devoted to present an accurate assessment for determine natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by an adaptive generalized finite element method (GFEM). The present paper concentrates on developing the C1 element of the adaptive GFEM for vibration analysis of Euler-Bernoulli beams and frames.

Design/methodology/approach

The variational problem of free vibration is formulated and the main aspects of the adaptive GFEM are presented and discussed. The efficiency and convergence of the proposed method in vibration analysis of uniform and non-uniform Euler-Bernoulli beams are checked. The application of this technique in a frame is also presented.

Findings

The present paper concentrates on developing the C1 element of the adaptive GFEM for vibration analysis of Euler-Bernoulli beams and frames. The GFEM, which was conceived on the basis of the partition of unity method, allows the inclusion of enrichment functions that contain a priori knowledge about the fundamental solution of the governing differential equation. The proposed enrichment functions are dependent on the geometric and mechanical properties of the element. This approach converges very fast and is able to approximate the frequency related to any vibration mode.

Originality/value

The main contribution of the present study consisted in proposing an adaptive GFEM for vibration analysis of Euler-Bernoulli uniform and non-uniform beams and frames. The GFEM results were compared with those obtained by the h and p-versions of FEM and the c-version of the CEM. The adaptive GFEM has shown to be efficient in the vibration analysis of beams and has indicated that it can be applied even for a coarse discretization scheme in complex practical problems.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 August 2009

Jani Paavilainen, Jukka Tuhkuri and Arttu Polojärvi

The purpose of this paper is to present a 2D combined finite‐discrete element method (FEM‐DEM) to model the multi‐fracture of beam structures and an application of the method to…

1346

Abstract

Purpose

The purpose of this paper is to present a 2D combined finite‐discrete element method (FEM‐DEM) to model the multi‐fracture of beam structures and an application of the method to an ice‐structure interaction problem.

Design/methodology/approach

In the method, elastic beams and their fracture are modelled according to FEM by using nonlinear Timoshenko beam elements and cohesive crack model. Additionally, the beam elements are used to tie the discrete elements together. The contact forces between the colliding beams are calculated by using the DEM.

Findings

Three numerical examples are given to verify the method. Further, the method is applied to model the failure process of a floating ice beam against an inclined structure. Based on the comparison of the experiments and the simulation, a good agreement between the results is observed.

Originality/value

In the context of combined FEM‐DEM, the two novel features presented in this paper are: the use of Timoshenko finite element beams with damping to calculate internal forces and to combine the discrete elements; and the bending failure by the cohesive crack approach while simultaneously keeping track of the position of the neutral axis of the beam.

Details

Engineering Computations, vol. 26 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2015

Joshua Poganski, Mathias Mair and Katrin Ellermann

The purpose of this paper is to get a more consistent finite element description for three-dimensional (3D) Timoshenko beam elements. It extends the common description of beam

Abstract

Purpose

The purpose of this paper is to get a more consistent finite element description for three-dimensional (3D) Timoshenko beam elements. It extends the common description of beam elements by modifying the shape functions and considers the warping of the cross-section due to torsion.

Design/methodology/approach

The paper builds mainly on a finite element description of 3D Timoshenko beam elements. The implementation of high-order shape functions for torsion is done by adding a seventh degree of freedom to the system.

Findings

The results reveal that for some beams, depending on their physical dimensions, the warping of the cross-section has large influence. In comparison to a conventional FE program, the extended finite element description considers the warping and yields more accurate results.

Practical implications

An application of the extended finite element description is done with an implementation of the code in MATLAB. The static and dynamic behavior of a rotor in an electrical machine is investigated.

Originality/value

This paper presents a more consistent finite element description of 3D Timoshenko beam elements considering the warping. A comparison to conventional finite element descriptions is given.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

João Paulo Pascon

The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio.

Abstract

Purpose

The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio.

Design/methodology/approach

The material is assumed to be linear elastic, with a Poisson’s ratio varying according to a power law along the thickness direction. The finite element used is a plane beam of any-order of approximation along the axis, and with four transverse enrichment schemes, which can describe constant, linear, quadratic and cubic variation of the strain along the thickness direction. Regarding the constitutive law, five materials are adopted: two homogeneous limiting cases, and three intermediate FG cases. The effect of both finite element kinematics and distribution of Poisson’s ratio on the mechanical response of a cantilever is investigated.

Findings

In accordance with the scientific literature, the second scheme, in which the transverse strain is linearly variable, is sufficient for homogeneous long (or thin) beams under bending. However, for FG short (or moderate thick) beams, the third scheme, in which the transverse strain variation is quadratic, is needed for a reliable strain or stress distribution.

Originality/value

In the scientific literature, there are several studies regarding nonlinear analysis of functionally graded materials (FGMs) via finite elements, analysis of FGMs with constant Poisson’s ratio, and geometrically linear problems with gradually variable Poisson’s ratio. However, very few deal with finite element analysis of flexible beams with gradually variable Poisson’s ratio. In the present study, a reliable formulation for such beams is presented.

Article
Publication date: 25 February 2014

Dragan Ribarić and Gordan Jelenić

In this work, the authors aim to employ the so-called linked-interpolation concept already tested on beam and quadrilateral plate finite elements in the design of…

Abstract

Purpose

In this work, the authors aim to employ the so-called linked-interpolation concept already tested on beam and quadrilateral plate finite elements in the design of displacement-based higher-order triangular plate finite elements and test their performance.

Design/methodology/approach

Starting from the analogy between the Timoshenko beam theory and the Mindlin plate theory, a family of triangular linked-interpolation plate finite elements of arbitrary order are designed. The elements are tested on the standard set of examples.

Findings

The derived elements pass the standard patch tests and also the higher-order patch tests of an order directly related to the order of the element. The lowest-order member of the family of developed elements still suffers from shear locking for very coarse meshes, but the higher-order elements turn out to be successful when compared to the elements from literature for the problems with the same total number of the degrees of freedom.

Research limitations/implications

The elements designed perform well for a number of standard benchmark tests, but the well-known Morley's skewed plate example turns out to be rather demanding, i.e. the proposed design principle cannot compete with the mixed-type approach for this test. Work is under way to improve the proposed displacement-based elements by adding a number of internal bubble functions in the displacement and rotation fields, specifically chosen to satisfy the basic patch test and enable a softer response in the bench-mark test examples.

Originality/value

A new family of displacement-based higher-order triangular Mindlin plate finite elements has been derived. The higher-order elements perform very well, whereas the lowest-order element requires improvement.

Details

Engineering Computations, vol. 31 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 May 2023

Yongliang Wang

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate…

Abstract

Purpose

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate identification of the crack damage depth, number and location depends on high-precision frequency and vibration mode solutions; therefore, it is critical to obtain these reliable solutions. The high-precision finite element method for the free vibration of cracked beams needs to be developed to grasp and control error information in the conventional solutions and the non-uniform mesh generation near the cracks. Moreover, the influence of multi-crack damage on the natural frequency and vibration mode of a circularly curved beam needs to be detected.

Design/methodology/approach

A scheme for cross-sectional damage defects in a circularly curved beam was established to simulate the depth, location and the number of multiple cracks by implementing cross-section reduction induced by microcrack damage. In addition, the h-version finite element mesh adaptive analysis method of the Timoshenko beam was developed. The superconvergent solution of the vibration mode of the cracked curved beam was obtained using the superconvergent patch recovery displacement method to determine the finite element solution. The superconvergent solution of the frequency was obtained by computing the Rayleigh quotient. The superconvergent solution of the eigenfunction was used to estimate the error of the finite element solution in the energy norm. The mesh was then subdivided to generate an improved mesh based on the error. Accordingly, the final optimised meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained. Lastly, the disturbance behaviour of multi-crack damage on the vibration mode of a circularly curved beam was also studied.

Findings

Numerical results of the free vibration and damage disturbance of cracked curved beams with cracks were obtained. The influences of crack damage depth, crack damage number and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam were quantitatively analysed. Numerical examples indicate that the vibration mode and frequency of the beam would be disturbed in the region close to the crack damage, and a greater crack depth translates to a larger frequency change. For multi-crack beams, the number and distribution of cracks also affect the vibration mode and natural frequency. The adaptive method can use a relatively dense mesh near the crack to adapt to the change in the vibration mode near the crack, thus verifying the efficacy, accuracy and reliability of the method.

Originality/value

The proposed combination of methodologies provides an extremely robust approach for free vibration of beams with cracks. The non-uniform mesh refinement in the adaptive method can adapt to changes in the vibration mode caused by crack damage. Moreover, the proposed method can adaptively divide a relatively fine mesh at the crack, which is applied to investigating free vibration under various curved beam angles and crack damage distribution conditions. The proposed method can be extended to crack damage detection of 2D plate and shell structures and three-dimensional structures with cracks.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 2000