Search results

1 – 9 of 9
Open Access
Article
Publication date: 30 April 2024

Armando Di Meglio, Nicola Massarotti and Perumal Nithiarasu

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the…

Abstract

Purpose

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the combined power of deep learning (DL) and physics-based methods (PBM) to create an active virtual replica of the physical system.

Design/methodology/approach

To achieve this goal, we introduce a deep neural network (DNN) as the digital twin and a Finite Element (FE) model as the physical system. This integrated approach is used to address the challenges of controlling an unsteady heat transfer problem with an integrated feedback loop.

Findings

The results of our study demonstrate the effectiveness of the proposed digital twinning approach in regulating the maximum temperature within the system under varying and unsteady heat flux conditions. The DNN, trained on stationary data, plays a crucial role in determining the heat transfer coefficients necessary to maintain temperatures below a defined threshold value, such as the material’s melting point. The system is successfully controlled in 1D, 2D and 3D case studies. However, careful evaluations should be conducted if such a training approach, based on steady-state data, is applied to completely different transient heat transfer problems.

Originality/value

The present work represents one of the first examples of a comprehensive digital twinning approach to transient thermal systems, driven by data. One of the noteworthy features of this approach is its robustness. Adopting a training based on dimensionless data, the approach can seamlessly accommodate changes in thermal capacity and thermal conductivity without the need for retraining.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 January 2022

Dinda Thalia Andariesta and Meditya Wasesa

This research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.

4914

Abstract

Purpose

This research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.

Design/methodology/approach

To develop the prediction models, this research utilizes multisource Internet data from TripAdvisor travel forum and Google Trends. Temporal factors, posts and comments, search queries index and previous tourist arrivals records are set as predictors. Four sets of predictors and three distinct data compositions were utilized for training the machine learning models, namely artificial neural networks (ANNs), support vector regression (SVR) and random forest (RF). To evaluate the models, this research uses three accuracy metrics, namely root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).

Findings

Prediction models trained using multisource Internet data predictors have better accuracy than those trained using single-source Internet data or other predictors. In addition, using more training sets that cover the phenomenon of interest, such as COVID-19, will enhance the prediction model's learning process and accuracy. The experiments show that the RF models have better prediction accuracy than the ANN and SVR models.

Originality/value

First, this study pioneers the practice of a multisource Internet data approach in predicting tourist arrivals amid the unprecedented COVID-19 pandemic. Second, the use of multisource Internet data to improve prediction performance is validated with real empirical data. Finally, this is one of the few papers to provide perspectives on the current dynamics of Indonesia's tourism demand.

Article
Publication date: 25 April 2024

Boxiang Xiao, Zhengdong Liu, Jia Shi and Yuanxia Wang

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well…

Abstract

Purpose

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well as virtual clothing simulation is an attractive research issue both in clothing industry and computer graphics.

Design/methodology/approach

Physics-based method is an effective way to model dynamic process and generate realistic clothing animation. Due to conceptual simplicity and computational speed, mass-spring model is frequently used to simulate deformable and soft objects follow the natural physical rules. We present a physics-based clothing pattern generating framework by using scanned human body model. After giving a scanned human body model, first, we extract feature points, planes and curves on the 3D model by geometric analysis, and then, we construct a remeshed surface which has been formatted to connected quad meshes. Second, for each clothing piece in 3D, we construct a mass-spring model with same topological structures, and conduct a typical time integration algorithm to the mass-spring model. Finally, we get the convergent clothing pieces in 2D of all clothing parts, and we reconnected parts which are adjacent on 3D model to generate the basic clothing pattern.

Findings

The results show that the presented method is a feasible way for clothing pattern generating by use of scanned human body model.

Originality/value

The main contribution of this work is twofold: one is the geometric algorithm to scanned human body model, which is specially conducted for clothing pattern design to extract feature points, planes and curves. This is the crucial base for suit clothing pattern generating. Another is the physics-based pattern generating algorithm which flattens the 3D shape to 2D shape of cloth pattern pieces.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 March 2024

Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…

Abstract

Purpose

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.

Design/methodology/approach

Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.

Findings

The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.

Originality/value

To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 January 2024

Pedro L. Angosto-Fernández and Victoria Ferrández-Serrano

The objective of this research is to identify the economic, demographic, sanitary and even cultural factors which explain the variability in the cross-section of returns in…

Abstract

Purpose

The objective of this research is to identify the economic, demographic, sanitary and even cultural factors which explain the variability in the cross-section of returns in different markets globally during the first weeks after the outbreak of COVID-19.

Design/methodology/approach

Building on the event study methodology and using seemingly unrelated equations, the authors created several indicators on the impact of the pandemic in 75 different markets. Then, and using cross-sectional regressions robust to heteroscedasticity and using an algorithm to select independent variables from more than 30 factors, the authors determine which factors were behind the different stock market reactions to the pandemic.

Findings

Higher currency depreciation, inflation, interest rate or government deficit led to higher returns, while higher life expectancy, ageing population, GDP per capita or health spending led to the opposite effect. However, the positive effect of competitiveness and the negative effect of income inequality stand out for their statistical and economic significance.

Originality/value

This research provides a global view of investors' reaction to an extreme and unique event. Using a sample of 75 capital markets and testing the relevance of more than 30 variables from all categories, it is, to the authors' knowledge, the largest and most ambitious study of its kind.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 27 March 2024

Jyoti Mudkanna Gavhane and Reena Pagare

The purpose of this study was to analyze importance of artificial intelligence (AI) in education and its emphasis on assessment and adversity quotient (AQ).

Abstract

Purpose

The purpose of this study was to analyze importance of artificial intelligence (AI) in education and its emphasis on assessment and adversity quotient (AQ).

Design/methodology/approach

The study utilizes a systematic literature review of over 141 journal papers and psychometric tests to evaluate AQ. Thematic analysis of quantitative and qualitative studies explores domains of AI in education.

Findings

Results suggest that assessing the AQ of students with the help of AI techniques is necessary. Education is a vital tool to develop and improve natural intelligence, and this survey presents the discourse use of AI techniques and behavioral strategies in the education sector of the recent era. The study proposes a conceptual framework of AQ with the help of assessment style for higher education undergraduates.

Originality/value

Research on AQ evaluation in the Indian context is still emerging, presenting a potential avenue for future research. Investigating the relationship between AQ and academic performance among Indian students is a crucial area of research. This can provide insights into the role of AQ in academic motivation, persistence and success in different academic disciplines and levels of education. AQ evaluation offers valuable insights into how individuals deal with and overcome challenges. The findings of this study have implications for higher education institutions to prepare for future challenges and better equip students with necessary skills for success. The papers reviewed related to AI for education opens research opportunities in the field of psychometrics, educational assessment and the evaluation of AQ.

Details

Education + Training, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0040-0912

Keywords

Article
Publication date: 13 June 2023

Anita Cerić and Ivona Ivić

As climate change has become a growing concern, sustainable development has become increasingly important. Emissions reduction is a key step for more efficient energy use. In the…

Abstract

Purpose

As climate change has become a growing concern, sustainable development has become increasingly important. Emissions reduction is a key step for more efficient energy use. In the last few years, the residential building sector in Croatia has received financial support for multi-dwelling building energy efficiency retrofits (EERs). However, some of these projects encountered difficulties due to information asymmetry between the key participants. This study aims to address the problem from the perspective of the principal-agent theory, which is concerned with information asymmetry and the asymmetry's repercussions.

Design/methodology/approach

A social network analysis is conducted to reflect the operation and management (OM) details of Croatian multi-dwelling buildings. The key stakeholders of EER are mapped, along with the contractual and communication ties between them. Using the Gephi software, relationship data are visually represented and statistically evaluated.

Findings

The analysis indicated two different clusters or groups of stakeholders in EERs in Croatia and enabled the mapping of key relationships between stakeholders. The findings stress the importance of the key relationship between owner representatives (ORs) and property managers (PMs).

Originality/value

The contribution of this study is the development of framework for blockchain implementation in EERs, which can be adapted for use in different markets and/or projects. Blockchain is proposed for minimization of information asymmetry between different stakeholders. Blockchain enables communication and cooperation during project development and enhances trust among stakeholders.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 3 June 2022

XiYue Deng, Xiaoming Li, Zhenzhen Chen, Mengli Zhu, Naixue Xiong and Li Shen

Human group behavior is the driving force behind many complex social and economic phenomena. Few studies have integrated multi-dimensional travel patterns and city interest points…

697

Abstract

Purpose

Human group behavior is the driving force behind many complex social and economic phenomena. Few studies have integrated multi-dimensional travel patterns and city interest points to construct urban security risk indicators. This paper combines traffic data and urban alarm data to analyze the safe travel characteristics of the urban population. The research results are helpful to explore the diversity of human group behavior, grasp the temporal and spatial laws and reveal regional security risks. It provides a reference for optimizing resource deployment and group intelligence analysis in emergency management.

Design/methodology/approach

Based on the dynamics index of group behavior, this paper mines the data of large shared bikes and ride-hailing in a big city of China. We integrate the urban interest points and travel dynamic characteristics, construct the urban traffic safety index based on alarm behavior and further calculate the urban safety index.

Findings

This study found significant differences in the travel power index among ride-sharing users. There is a positive correlation between user shared bike trips and the power-law bimodal phenomenon in the logarithmic coordinate system. It is closely related to the urban public security index.

Originality/value

Based on group-shared dynamic index integrated alarm, we innovatively constructed an urban public safety index and analyzed the correlation of travel alarm behavior. The research results fully reveal the internal mechanism of the group behavior safety index and provide a valuable supplement for the police intelligence analysis.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 16 August 2023

Taraprasad Mohapatra, Sudhansu Sekhar Mishra, Mukesh Bathre and Sudhansu Sekhar Sahoo

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of…

Abstract

Purpose

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The performance parameters like brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), whereas CO emission, HC emission, CO2 emission, NOx emission, exhaust gas temperature (EGT) and opacity are the emission parameters measured during the test. Tests are conducted for 2, 6 and 10 kg of load, 16.5 and 17.5 of CR.

Design/methodology/approach

In this investigation, the first engine was fueled with 100% diesel and 100% Calophyllum inophyllum oil in single-fuel mode. Then Calophyllum inophyllum oil with producer gas was fed to the engine. Calophyllum inophyllum oil offers lower BTE, CO and HC emissions, opacity and higher EGT, BSEC, CO2 emission and NOx emissions compared to diesel fuel in both fuel modes of operation observed. The performance optimization using the Taguchi approach is carried out to determine the optimal input parameters for maximum performance and minimum emissions for the test engine. The optimized value of the input parameters is then fed into the prediction techniques, such as the artificial neural network (ANN).

Findings

From multiple response optimization, the minimum emissions of 0.58% of CO, 42% of HC, 191 ppm NOx and maximum BTE of 21.56% for 16.5 CR, 10 kg load and dual fuel mode of operation are determined. Based on generated errors, the ANN is also ranked for precision. The proposed ANN model provides better prediction with minimum experimental data sets. The values of the R2 correlation coefficient are 1, 0.95552, 0.94367 and 0.97789 for training, validation, testing and all, respectively. The said biodiesel may be used as a substitute for conventional diesel fuel.

Originality/value

The blend of Calophyllum inophyllum oil-producer gas is used to run the diesel engine. Performance and emission analysis has been carried out, compared, optimized and validated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 9 of 9