Search results

1 – 10 of over 14000
Article
Publication date: 24 November 2020

Sakthivel Murugan R. and Vinodh S.

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a…

Abstract

Purpose

This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a technique for order preference by similarity to ideal solution (TOPSIS) and analytical hierarchy process (AHP) calculation.

Design/methodology/approach

The optimization of process parameters is gaining a potential role to develop robust products. In this context, this paper presents the parametric optimization of the FDM process using Grey-based Taguchi, TOPSIS and AHP method. The effect of slice height (SH), part fill style (PFS) and build orientation (BO) are investigated with the response parameters machining time, surface roughness and hardness (HD). Multiple objective optimizations were performed with weights of w1 = 60%, w2 = 20% and w3 = 20%. The significance of the process parameters over response parameters is identified through analysis of variance (ANOVA). Comparisons are made in terms of rank order with respect to grey relation grade (GRG), relative closeness and AHP index values. Response table, percentage contributions of process parameters for both GRG and TOPSIS evaluation are done.

Findings

The optimum factor levels are identified using GRG via the Grey Taguchi method and TOPSIS via relative closeness values. The optimized factor levels are SH (0.013 in), PFS (solid) and BO (45°) using GRG and SH (0.013 in), PFS (sparse-low density) and BO (45°) using TOPSIS relative closeness value. SH has higher significance in both Grey relational analysis and TOPSIS which were analysed using ANOVA.

Research limitations/implications

In this research, the multiple objective optimizations were done on an automotive component using GRG, TOPSIS and AHP which showed a 27% similarity in their ranking order among the experiments. In the future, other advanced optimization techniques will be applied to further improve the similarity in ranking order.

Practical implications

The study presents the case of an automotive component, which illustrates practical relevance.

Originality/value

In several research studies, optimization was done on the standard test specimens but not on a real-time component. Here, the multiple objective optimizations were applied to a case automotive component using Grey-based Taguchi and verified with TOPSIS. Hence, an effort has been taken to find optimum process parameters on FDM, for achieving smooth, hardened automotive components with enhanced printing time. The component can be explored as a replacement for the existing product.

Article
Publication date: 1 October 2006

Jiju Antony, Raj Bardhan Anand, Maneesh Kumar and M.K. Tiwari

To provide a good insight into solving a multi‐response optimization problem using neuro‐fuzzy model and Taguchi method of experimental design.

2201

Abstract

Purpose

To provide a good insight into solving a multi‐response optimization problem using neuro‐fuzzy model and Taguchi method of experimental design.

Design/methodology/approach

Over the last few years in many manufacturing organizations, multiple response optimization problems were resolved using the past experience and engineering judgment, which leads to increase in uncertainty during the decision‐making process. In this paper, a four‐step procedure is proposed to resolve the parameter design problem involving multiple responses. This approach employs the advantage of both artificial intelligence tool (neuro‐fuzzy model) and Taguchi method of experimental design to tackle problems involving multiple responses optimization.

Findings

The proposed methodology is validated by revisiting a case study to optimize the three responses for a double‐sided surface mount technology of an electronic assembly. Multiple signal‐to‐noise ratios are mapped into a single performance statistic through neuro‐fuzzy based model, to identify the optimal level settings for each parameter. Analysis of variance is finally performed to identify parameters significant to the process.

Research limitations/implications

The proposed model will be validated in future by conducting a real life case study, where multiple responses need to be optimized simultaneously.

Practical implications

It is believed that the proposed procedure in this study can resolve a complex parameter design problem with multiple responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready‐made neural and statistical software like Neuro Work II professional and Minitab.

Originality/value

This study adds to the literature of multi‐optimization problem, where a combination of the neuro‐fuzzy model and Taguchi method is utilized hand‐in‐hand.

Details

Journal of Manufacturing Technology Management, vol. 17 no. 7
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 24 September 2021

Abhinav Kumar Sharma, Indrajit Mukherjee, Sasadhar Bera and Raghu Nandan Sengupta

The primary objective of this study is to propose a robust multiobjective solution search approach for a mean-variance multiple correlated quality characteristics optimisation

Abstract

Purpose

The primary objective of this study is to propose a robust multiobjective solution search approach for a mean-variance multiple correlated quality characteristics optimisation problem, so-called “multiple response optimisation (MRO) problem”. The solution approach needs to consider response surface (RS) model parameter uncertainties, response uncertainties, process setting sensitivity and response correlation strength to derive the robust solutions iteratively.

Design/methodology/approach

This study adopts a new multiobjective solution search approach to determine robust solutions for a typical mean-variance MRO formulation. A fine-tuned, non-dominated sorting genetic algorithm-II (NSGA-II) is used to derive efficient multiobjective solutions for varied mean-variance MRO problems. The iterative search considers RS model uncertainties, process setting uncertainties and response correlation structure to derive efficient fronts. The final solutions are ranked based on two different multi-criteria decision-making (MCDM) techniques.

Findings

Five different mean-variance MRO cases are selected from the literature to verify the efficacy of the proposed solution approach. Results derived from the proposed solution approach are compared and contrasted with the best solution(s) derived from other approaches suggested in the literature. Comparative results indicate significant superiorities of the top-ranked predicted robust solutions in nondominated frequency, closeness-to-target and response variabilities.

Research limitations/implications

The solution approach depends on RS modelling and considers continuous search space.

Practical implications

In this study, promising robust solutions are expected to be more suitable for implementation than point estimate-based MOO solutions for a real-life MRO problem.

Originality/value

No evidence of earlier research demonstrates the superiority of a MOO-based iterative solution search approach for mean-variance MRO problems by simultaneously considering model uncertainties, response correlation and process setting sensitivity.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 25 February 2014

P.R. Periyanan and U. Natarajan

Micro-EDM is an important process in the field of micro-machining. Especially, the μEDM is one of the technologies widely used for manufacture of micro-parts, micro-tools and…

Abstract

Purpose

Micro-EDM is an important process in the field of micro-machining. Especially, the μEDM is one of the technologies widely used for manufacture of micro-parts, micro-tools and micro-components, etc. The accuracy and repeatability of the μEDM process is still highly dependent on the μWEDG process. The electrode generation and regeneration is considered a key enabling technology for improving the performance of the μEDM process. Many engineers considered the Taguchi technique as engineering judgment during multiple response optimizations. This paper aims to focus on the use of micro-WEDG process to generate a micro-tool (electrode) with minimum surface roughness and higher metal removal rate (MRR).

Design/methodology/approach

In this research work, the Taguchi quality loss function analysis is used to examine and explain the influences of three process parameters (feed rate, capacitance and voltage) on the output responses such as MRR and surface roughness. Further, the optimized machining parameters were determined considering the multiple response objective using Taguchi multi-response signal-to-noise ratio.

Findings

Based on the experimental result, it was concluded that the Taguchi technique is suitable for the optimization of multi-response problem.

Originality/value

This paper presents an alternative approach using Taguchi's quality loss function. In most of the modern technological situations, more than one response variable is pertinent to the success of an industrial process. In this research work, the influence of feed rate, capacitance and voltage on the MRR and surface roughness (multiple responses) is investigated.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 March 2018

Cem Savas Aydin, Senim Ozgurler, Mehmet Bulent Durmusoglu and Mesut Ozgurler

This paper aims to present a multi-response robust design (RD) optimization approach for U-shaped assembly cells (ACs) with multi-functional walking-workers by using operational…

Abstract

Purpose

This paper aims to present a multi-response robust design (RD) optimization approach for U-shaped assembly cells (ACs) with multi-functional walking-workers by using operational design (OD) factors in a simulation setting. The proposed methodology incorporated the design factors related to the operation of ACs into an RD framework. Utilization of OD factors provided a practical design approach for ACs addressing system robustness without modifying the cell structure.

Design/methodology/approach

Taguchi’s design philosophy and response surface meta-models have been combined for robust simulation optimization (SO). Multiple performance measures have been considered for the study and concurrently optimized by using a multi-response optimization (MRO) approach. Simulation setting provided flexibility in experimental design selection and facilitated experiments by avoiding cost and time constraints in real-world experiments.

Findings

The present approach is illustrated through RD of an AC for performance measures: average throughput time, average WIP inventory and cycle time. Findings are in line with expectations that a significant reduction in performance variability is attainable by trading-off optimality for robustness. Reductions in expected performance (optimality) values are negligible in comparison to reductions in performance variability (robustness).

Practical implications

ACs designed for robustness are more likely to meet design objectives once they are implemented, preventing changes or roll-backs. Successful implementations serve as examples to shop-floor personnel alleviating issues such as operator/supervisor resistance and scepticism, encouraging participation and facilitating teamwork.

Originality/value

ACs include many activities related to cell operation which can be used for performance optimization. The proposed framework is a realistic design approach using OD factors and considering system stochasticity in terms of noise factors for RD optimization through simulation. To the best of the authors’ knowledge, it is the first time a multi-response RD optimization approach for U-shaped manual ACs with multi-functional walking-workers using factors related to AC operation is proposed.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 September 2019

Abhinav Kumar Sharma and Indrajit Mukherjee

The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and…

Abstract

Purpose

The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and mean-variance optimisation of multiple “quality characteristics” (or “responses”), considering predictive uncertainties. The second objective is comparing the solution qualities of the proposed approach with those of existing approaches. The third objective is the proposal of a modified non-dominated sorting genetic algorithm-II (NSGA-II), which improves the solution quality for multiple response optimisation (MRO) problems.

Design/methodology/approach

The proposed solution approach integrates empirical response surface (RS) models, a simultaneous prediction interval-based MOO iterative search, and the multi-criteria decision-making (MCDM) technique to select the best implementable efficient solutions.

Findings

Implementation of the proposed approach in varied MRO problems demonstrates a significant improvement in the solution quality in worst-case scenarios. Moreover, the results indicate that the solution quality of the modified NSGA-II largely outperforms those of two existing MOO solution strategies.

Research limitations/implications

The enhanced MOO solution approach is limited to parametric RS prediction models and continuous search spaces.

Practical implications

The best-ranked solutions according to the proposed approach are derived considering the model predictive uncertainties and MCDM technique. These solutions (or process setting conditions) are expected to be more reliable for satisfying customer specification compared to point estimate-based MOO solutions in real-life implementation.

Originality/value

No evidence exists of earlier research that has demonstrated the suitability and superiority of an MOO solution approach for both mean and mean-variance MRO problems, considering RS uncertainties. Furthermore, this work illustrates the step-by-step implementation results of the proposed approach for the six selected MRO problems.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 7 August 2019

Bobby Oedy Pramoedyo Soepangkat, Rachmadi Norcahyo, Pathya Rupajati, Mohammad Khoirul Effendi and Helena Carolina Kis Agustin

The purpose of this paper is to investigate prediction and optimization of multiple performance characteristics in the wire electrical discharge machining (wire-EDM) process of…

Abstract

Purpose

The purpose of this paper is to investigate prediction and optimization of multiple performance characteristics in the wire electrical discharge machining (wire-EDM) process of SKD 61 (AISI H13) tool steel.

Design/methodology/approach

The experimental studies were conducted under varying wire-EDM process parameters, which were arc on time, on time, open voltage, off time and servo voltage. The optimized responses were recast layer thickness (RLT), surface roughness (SR) and surface crack density (SCD). Arc on time was set at two different levels, whereas the other four parameters were set at three different levels. Based on Taguchi method, an L18 mixed-orthogonal array was selected for the experiments. Further, three methods, namely grey relational analysis (GRA), backpropagation neural network (BPNN) and genetic algorithm (GA), were applied separately. GRA was performed to obtain a rough estimation of optimum drilling parameters. The influences of drilling parameters on multiple performance characteristics were determined by using percentage contributions. BPNN architecture was determined to predict the multiple performance characteristics. GA method was then applied to determine the optimum wire-EDM parameters.

Findings

The minimum RLT, SR and SCD could be obtained by setting arc on time, on time, open voltage, off time and servo voltage at 2 ms, 3 ms, 90 volt, 10 ms and 38 volt, respectively. The experimental confirmation results showed that BPNN-based GA optimization method could accurately predict and significantly improve all of the responses.

Originality/value

There were no publications regarding multi-response optimization using a combination of GRA and BPNN-based GA methods during wire-EDM process available.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 July 2013

Kumar Abhishek, Saurav Datta, Siba Sankar Mahapatra, Goutam Mandal and Gautam Majumdar

The study has been aimed to search an appropriate process environment for simultaneous optimization of quality‐productivity favorably. Various surface roughness parameters (of the…

Abstract

Purpose

The study has been aimed to search an appropriate process environment for simultaneous optimization of quality‐productivity favorably. Various surface roughness parameters (of the machined product) have been considered as product quality characteristics whereas material removal rate (MRR) has been treated as productivity measure for the said machining process.

Design/methodology/approach

In this study, three controllable process parameters, cutting speed, feed, and depth of cut, have been considered for optimizing material removal rate (MRR) of the process and multiple surface roughness features for the machined product, based on L9 orthogonal array experimental design. To avoid assumptions, limitation, uncertainty and imprecision in application of existing multi‐response optimization techniques documented in literature, a fuzzy inference system (FIS) has been proposed to convert such a multi‐objective optimization problem into an equivalent single objective optimization situation by adapting FIS. A multi‐performance characteristic index (MPCI) has been defined based on the FIS output. MPCI has been optimized finally using Taguchi method.

Findings

The study demonstrates application feasibility of the proposed approach with satisfactory result of confirmatory test. The proposed procedure is simple, and effective in developing a robust, versatile and flexible mass production process.

Originality/value

In the proposed model it is not required to assign individual response weights; no need to check for response correlation. FIS can efficiently take care of these aspects into its internal hierarchy thereby overcoming various limitations/assumptions of existing optimization approaches.

Details

Journal of Manufacturing Technology Management, vol. 24 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 24 October 2008

George J. Besseris

The purpose of this paper is to propose a simple methodology in solving multi‐response optimisation problems by employing Taguchi methods and a non‐parametric statistical…

1214

Abstract

Purpose

The purpose of this paper is to propose a simple methodology in solving multi‐response optimisation problems by employing Taguchi methods and a non‐parametric statistical technique.

Design/methodology/approach

There is a continuous interest in developing effective and statistically sound multi‐response optimisation methods such that they will provide a firm framework in global product and process improvement. A non‐parametric approach is proposed for the first time in a five‐step methodology that exploits Taguchi's fractional factorial designs and the concept of signal‐to‐noise ratio in data consolidation. The distinct feature of this method is the transformation of each response variable to a single rank variable. The subsequent incorporation of the squared ranks for each of the investigated responses issues a single master‐rank response suitably referred to conveniently as a “Super Rank” (SR) response, thus collapsing all dependent product characteristic information into a single non‐dimensional variable. This SR variable is handled by standard non‐parametric methods such as Wilcoxon's two‐sample, rank sum test or Mann‐Whitney's test eliminating at the same time multi‐distribution effects and small‐sample complications expected for this type of experimentation.

Findings

The proposed methodology is tested on already published data pertaining a design problem in the electronic assembly technology field. The case study requires six‐factor simultaneous optimisation of three response variables. A second example is analyzed by the proposed method focusing on the optimisation of a submerged arc‐welding process problem due to a group of five factors. The Mann‐Whitney's test contrasts the effects of factor settings one‐to‐one on the SR response in order to assign statistical significance to the optimal factor settings.

Research limitations/implications

The application of this methodology is tested at the same time in a real three‐response optimisation case study where each response belongs to different optimisation category.

Practical implications

The methodology outlined in this work eliminates the need for sophisticated multi‐response data handling. In addition, small‐sample considerations and multi‐distribution effects that may be inherent do not restrict the applicability of the method presented herein by this type of experimentation.

Originality/value

This investigation provides a new angle to the published methods of multi‐response optimisation by supporting Taguchi's design of experiments methods through a multi‐ranking scheme that leads to non‐parametric factor resolution.

Details

Journal of Manufacturing Technology Management, vol. 19 no. 8
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 31 July 2019

Bobby Oedy Pramoedyo Soepangkat, Rachmadi Norcahyo, Bambang Pramujati and M. Abdul Wahid

The purpose of this study is to investigate the prediction and optimization of multiple performance characteristics in the face milling process of tool steel ASSAB XW-42.

Abstract

Purpose

The purpose of this study is to investigate the prediction and optimization of multiple performance characteristics in the face milling process of tool steel ASSAB XW-42.

Design/methodology/approach

The face milling parameters (cutting speed, feed rate and axial depth of cut) and flow rate (FR) of cryogenic cooling were optimized with consideration of multiple performance characteristics, i.e. surface roughness (SR), cutting force (Fc) and metal removal rate (MRR). FR of cryogenic cooling has two levels, whereas the three face milling parameters each have three levels. Using Taguchi method, an L18 mixed-orthogonal array was selected as the design of experiments. The rough estimation of the optimum face milling parameters was determined by using grey fuzzy analysis. The global optimum face milling parameters were searched by applying the backpropagation neural network-based genetic algorithm (BPNN-GA) method.

Findings

The optimum SR, cutting force (Fc) and MRR could be obtained by setting FR, cutting speed, feed rate and axial depth of cut at 0.5 l/min, 280 m/min, 90 mm/min and 0.2 mm, respectively. The experimental confirmation results showed that BPNN-based GA optimization method could accurately predict and significantly improve all of the multiple performance characteristics.

Originality/value

To the best of the authors’ knowledge, there were no publications available regarding multi-response optimization using the combination of grey fuzzy analysis and BPNN-based GA methods during cryogenically face milling process.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 14000