Search results

1 – 10 of 228
Article
Publication date: 3 October 2016

Ganesh S. Warkhade, A. Veeresh Babu, Santosh Mane and Katam Ganesh Babu

Solar energy varies with time, intermittent; an accumulator unit is required to attach with collectors to collect energy for use when the sunshine is not available. This paper…

Abstract

Purpose

Solar energy varies with time, intermittent; an accumulator unit is required to attach with collectors to collect energy for use when the sunshine is not available. This paper aims to design a system for storing the solar sensible heat thermal energy.

Design/methodology/approach

This paper presents the design and experimental evaluation of sensible heat thermal energy storage (TES) system for its energy storage performance by varying the air flow rate and packing material shape. Heat transfer fluid as air and solid concrete material of high density of different shapes were used for storage.

Findings

This paper presents the evaluation of data of number of experimental observations on the system. It was found that charging/discharging was based on the shape of the material and void fraction.

Originality/value

This paper provides the data for designing the TES, considering the concrete as storage material and shape of material for optimizing the system.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 August 2019

Bartosz Ziegler, Jędrzej Mosiężny and Paweł Czyżewski

The aim of this study is to identify key factors limiting efficiency of pumped heat energy storage systems and determine some general features of transient behavior of solid…

Abstract

Purpose

The aim of this study is to identify key factors limiting efficiency of pumped heat energy storage systems and determine some general features of transient behavior of solid state, sensible heat storages. Moreover, it aimed at establishing a feasible approach to transient conjugate heat transfer (CHT) analyses for such applications.

Design/methodology/approach

A zero-dimensional analytical model is used to determine the system efficiency sensitivity to efficiency of its components. Analysis of argon gas flow in an exemplary configuration of layered bed thermal energy storage is presented. The analysis incorporates a unsteady reynolds averaged navier stokes model with conjugate heat transfer between gas and solid storage core.

Findings

It is established that exergetic efficiency of the heat storage is one of the key factors for the system’s overall performance. Three full cycles of storage charging and discharging having 17 h physical time in total are simulated, with calculation of exergetic efficiency for each of the cycles. From standpoint of the system efficiency, it is concluded that the presented heat storage kind has limited exergetic efficiency because of severe temperature drop at the solid–fluid interface in comparison to granular kind of heat storage devices. From the methodological standpoint, it is concluded that calculating the exergetic efficiency of the heat storage by direct computational fluid dynamics (CFD) analysis requires significant amount of walltime and computational resources.

Originality/value

The paper presents unconventional approach to using standard CFD tools by exploiting numerical diffusion to numerically suppress high-frequency solution oscillations. This strategy grants that the analysis, otherwise requiring impractically long computation walltime, is completed within a practical time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 January 2020

Chaitanya Dosapati and Mohan Jagadeesh Kumar Mandapati

Solar energy applications are limited because of its intermittent and discontinuous availability with respect to time. Hence, solar energy thermal conversion systems need…

163

Abstract

Purpose

Solar energy applications are limited because of its intermittent and discontinuous availability with respect to time. Hence, solar energy thermal conversion systems need integration with thermal storage units (TSUs) to use solar energy in off sunshine hours. This paper aims to perform thermal analysis of a solar air heater (SAH) integrated with a phase change material (PCM)-based TSU to supply hot air during night period.

Design/methodology/approach

An experimental setup with TSU as main component was prepared with SAH at its upward side, food chamber at its downward side as subcomponents. In TSU, paraffin wax was used as thermal energy storage material. Mass flow rate of air considered as an input parameter in the experiment. Two different absorber plates, namely, plane and ribbed absorber plates were used for the experimentation. Each day for a fixed mass flow of air, observations were made during charging and discharging of PCM.

Findings

Nusselt number and convection heat transfer coefficients were analytically calculated by considering flow through TSU as external flow over bank of tubes in a rectangular duct. A temperature drop of around 7-8°C during charging of PCM and temperature rise of around 4-5°C during discharging of PCM was observed from the experimental results. The average practical efficiency of TSU with ribbed absorber plate SAH during charging and discharging of PCM was 22 and 6 per cent, respectively, higher than that of TSU with plane absorber plate SAH.

Research limitations/implications

There are no limitations for research on SAH integrated with TSU. Different PCM including paraffin wax, Glauber’s salt, salt hydrates and water are used for thermal storage. Only limitation is lower efficiency of SAH integrated with TSU because of lower heat transfer coefficients with air as working medium. If it can improve heat transfer coefficients of air then heat transfer rates with these units will be higher.

Practical implications

There are no practical limitations for research on SAH integrated with TSU. Sophisticated instrumentation is needed to measure flow rates, temperatures and pressure variations of air.

Social implications

In poultry farms during night, chicks cannot survive at cold climatic conditions. Hence, hot air should be supplied to poultry farms whenever the atmospheric temperature drops. It is proposed that, in combination with TSUs, heat produced by SAH is stored in day time in the form of either sensible or latent heat and is retrieved to provide hot air in the night times. This will reduce total operating costs in poultry farms.

Originality/value

Conventionally, people are producing hot air by combusting coal in poultry forms. This cost around Rs. 75,000 per month for a batch of 225 to 250 chicks in a poultry form. Hot air could be produced economically during off sunshine hours from SAH integrated with TSU compared to the conventional method of coal burning. Present experimental investigations conducted to fill the literature gap in this area of research and to design a SAH integrated with TSU to produce hot air for poultry forms.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 August 2015

Uroš Stritih, Halime Paksoy, Bekir Turgut, Eneja Osterman, Hunay Evliya and Vincenc Butala

Bilateral project with Slovenia and Turkey with the title thermal energy storage for efficient utilization of solar energy was the basis for this paper. The paper aims to discuss…

2860

Abstract

Purpose

Bilateral project with Slovenia and Turkey with the title thermal energy storage for efficient utilization of solar energy was the basis for this paper. The paper aims to discuss this issue.

Design/methodology/approach

The paper is the review of solar thermal storage technologies with examples of use in Slovenia and Turkey.

Findings

The authors have found out that compact and cost effective thermal energy storage are essential.

Research limitations/implications

Research on the field of thermal energy storage in Slovenia and Turkey is presented.

Practical implications

The paper presents solar systems in Slovenia and Turkey.

Originality/value

The paper gives information about the sustainable energy future on the basis of solar energy.

Details

Management of Environmental Quality: An International Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Book part
Publication date: 5 June 2023

Harmeet Singh, Fatemeh Massah and Paul G. O'Brien

In this chapter the potential to use water-based Trombe walls to provide heated water for building applications during the summer months is investigated. Design Builder software…

Abstract

In this chapter the potential to use water-based Trombe walls to provide heated water for building applications during the summer months is investigated. Design Builder software is used to model a simple single-story building with a south-facing Trombe wall. The effects of using different thermal storage mediums within the Trombe wall on building heating loads during the winter and building cooling loads during the summer are modeled. The amount of thermal energy stored and temperature of water within the thermal storage medium during hot weather conditions were also simulated. On a sunny day on Toronto, Canada, the average temperature of the water in a Trombe wall integrated into a single-story building can reach ∼57°C, which is high enough to provide for the main hot water usages in buildings. Furthermore, the amount of water heated is three times greater than that required in an average household in Canada. The results from this work suggest that water-based Trombe walls have great potential to enhance the flexibility and utility of Trombe walls by providing heated water for building applications during summer months, without compromising performance during winter months.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Article
Publication date: 20 June 2019

Huijin Xu, Yan Wang and Xingchao Han

Phase change energy storage is an important solution for overcoming human energy crisis. This study aims to present an evaluation for the thermal performances of a phase change…

Abstract

Purpose

Phase change energy storage is an important solution for overcoming human energy crisis. This study aims to present an evaluation for the thermal performances of a phase change material (PCM) and a PCM–metal foam composite. Effects of pore size, pore density, thermal conductivity of solid structure and mushy region on the thermal storage process are examined.

Design/methodology/approach

In this paper, temperature, flow field and solid–liquid interface of a PCM with or without porous media were theoretically assessed. The influences of basic parameters on the melting process were analyzed. A PCM thermal storage device with a metal foam composite is designed and a thermodynamic analysis for it is conducted. The optimal PCM temperature and the optimal HTF temperature in the metal foam-enhanced thermal storage device are derived.

Findings

The results show that the solid–liquid interface of pure PCM is a line area and that of the mixture PCM is a mushy area. The natural convection in the melting liquid is intensive for a PCM without porous medium. The porous medium weakens the natural convection and makes the temperature field, flow field and solid–liquid interface distribution more homogeneous. The metal foam can greatly improve the heat storage rate of a PCM.

Originality/value

Thermal storage rate of a PCM is compared with that of a PCM–metal foam composite. A thermal analysis is performed on the multi-layered parallel-plate thermal storage device with a PCM embedded in a highly conductive porous medium, and an optimal melting temperature is obtained with the exergy optimization. The heat transfer enhancement with metal foams proved to be necessary for the thermal storage application.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 September 2008

Valentina A. Salomoni, Carmelo E. Majorana, Giuseppe M. Giannuzzi and Adio Miliozzi

The purpose of this paper is to describe an experience of R&D in the field of new technologies for solar energy exploitation within the Italian context. Concentrated solar power…

1238

Abstract

Purpose

The purpose of this paper is to describe an experience of R&D in the field of new technologies for solar energy exploitation within the Italian context. Concentrated solar power systems operating in the field of medium temperatures are the main research objectives, directed towards the development of a new and low‐cost technology to concentrate the direct radiation and efficiently convert solar energy into high‐temperature heat.

Design/methodology/approach

A multi‐tank sensible‐heat storage system is proposed for storing thermal energy, with a two‐tanks molten salt system. In the present paper, the typology of a below‐grade cone shape storage is taken up, in combination with nitrate molten salts at 565°C maximum temperature, using an innovative high‐performance concrete for structures absolving functions of containment and foundation.

Findings

Concrete durability in terms of prolonged thermal loads is assessed. The interaction between the hot tank and the surrounding environment (ground) is considered. The developed FE model simulates the whole domain, and a fixed heat source of 100°C is assigned to the internal concrete surface. The development of the thermal and hygral fronts within the tank thickness are analysed and results discussed for long‐term scenarios.

Originality/value

Within the medium temperature field, an innovative approach is here presented for the conceptual design of liquid salts concrete storage systems. The adopted numerical model accounts for the strong coupling among moisture and heat transfer and the mechanical field. The basic mathematical model is a single fluid phase non‐linear diffusion one based on the theory by Bažant; appropriate thermodynamic and constitutive relationships are supplemented to enhance the approach and catch the effects of different fluid phases (liquid plus gas).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2024

Burak Kiyak, Hakan Fehmi Oztop and Ishak Gökhan Aksoy

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container…

Abstract

Purpose

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container. Different container materials are also tested such as plexiglass and aluminium. This study aims to assess the energy storage capacity, melting behaviour and temperature distributions of PCM with a specific melting range (22°C–26°C) for various governing parameters such as inclination angles, aspect ratios (AR) and temperature differences (ΔT) and compare the melting behaviour and energy storage performance of PCM in aluminium containers to those in plexiglass containers.

Design/methodology/approach

A finite volume approach was adopted to evaluate the thermal energy storage capability of PCMs. Five inclination angles ranging from 0° to 180° were considered and the energy storage capacity. Also, the melting behaviour of the PCM and temperature distributions of the container with different materials were tested. Two different AR and ΔT values were chosen as parameters to analyse for their effects on the melting performance of the PCM. Conjugate heat transfer problem is solved to see the effects of conduction mode of heat transfer.

Findings

The results of the study indicate that as AR decreases, the effect of the inclination angles on the energy storage capacity of the PCM decreases. For lower ΔT, the difference between the maximum and minimum stored energies was 20.88% for AR = 0.20, whereas it was 6.85% for AR = 0.15. Furthermore, under the same conditions, the PCM stored 8.02% more energy in plexiglass containers than in aluminium containers.

Originality/value

This study contributes to the understanding of the influence of inclination angle, container material, AR and ΔT on the thermal energy storage capabilities of PCM in a novel designed container. The findings highlight the importance of AR in mitigating the effect of the inclination angle on energy storage capacity. Additionally, comparing aluminium and plexiglass containers provides insights into the effect of container material on the melting behaviour and energy storage properties of PCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2016

Anna Wieprzkowicz and Dariusz Heim

The purpose of this paper is to investigate energy performance of thermal insulation modified by phase change materials (PCM). Special attention was paid to the problem of proper…

Abstract

Purpose

The purpose of this paper is to investigate energy performance of thermal insulation modified by phase change materials (PCM). Special attention was paid to the problem of proper performance assessment of such components by computational techniques and methods of its evaluation.

Design/methodology/approach

Analysis was conducted on the basis of the results obtained using the dynamic building simulation technique performed by ESP-r software. Two cases of insulation components enhanced by a layer: characterised by increased latent heat capacity were analysed and compared. Results were investigated in terms of thermal comfort and energy efficiency, using evaluation methods from literature and new, original indicators proposed by authors.

Findings

The analysis revealed that performance of insulation enhanced by PCM is very dynamic and highly sensitive to changeable weather conditions. Thus, there is a strong need for the development of the assessment methods and guidelines for the performance of such components with changeable physical properties.

Practical implications

The methodology and the results reported in this paper could be used as a guideline for further parametric studies and optimisation tasks. Further development of phase change insulation can substantially change the existing approach to the building energy performance.

Originality/value

The paper introduces a new approach of the assessment of insulation components modified by PCM and highlights the dynamic characteristics of its performance.

Details

Management of Environmental Quality: An International Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of 228