Search results

1 – 10 of over 2000
Article
Publication date: 5 September 2016

K. Ashok, A. Kalaiselvi and V.R. Vijaykumar

One of the fundamental tasks in the field of image processing is image denoising. Images are often corrupted by different types of noise and the restoration of images degraded…

Abstract

Purpose

One of the fundamental tasks in the field of image processing is image denoising. Images are often corrupted by different types of noise and the restoration of images degraded with random-valued impulse noise is still a challenging task. The paper aims to discuss these issues.

Design/methodology/approach

This paper presents an adaptive threshold-based impulse noise detection following by a novel selective window median filter for restoration of RVIN pixels.

Findings

The proposed method emphasis a local image statistics using an exponential nonlinear function with an adaptive threshold is derived from the rank-ordered trimmed median absolute difference (ROTMAD) are deliberated to detect the noisy pixels. In the filtering stage, a selective 3×3 moving window median filter is applied to restore the detected noisy pixel.

Originality/value

Experimental result shows that the proposed algorithm outperforms the existing state-of-art techniques in terms of noise removal and quantitative metrics such as peak signal to noise ratio (PSNR), mean absolute error (MAE), structural similarity index metric (SSIM) and miss and false detection rate.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 8 August 2022

Jörn Pachl

This chapter provides basic knowledge on the principles used in modern signalling systems to ensure safe train separation and to establish safe routes through point zones. For

Abstract

This chapter provides basic knowledge on the principles used in modern signalling systems to ensure safe train separation and to establish safe routes through point zones. For train control, lineside signals are compared with cab signalling. For block protection, fixed block and moving block systems are covered. The described interlocking principles for routes leading through point zones include route locking and release, conflicting routes, flank protection, and overlaps. A section on automatic train protection explains the principles of how trains can be prevented from violating speed and authority limits. For this, an overview on the levels of the European Train Control System is provided. Some information is also given on train describers and automatic route setting systems to support traffic management in signalling centres.

Details

Sustainable Railway Engineering and Operations
Type: Book
ISBN: 978-1-83909-589-4

Keywords

Article
Publication date: 2 January 2018

Marlon Wesley Machado Cunico and Jonas de Carvalho

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently…

Abstract

Purpose

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently, recent developments have expanded the technologies, materials and applications in support of emerging needs, in addition to improving current processes. The present work aims to propose and characterise a new technology that is based on selective formation of metal-polymer composites with low power source.

Design/methodology/approach

To develop this project, the authors have divided this work in three parts: material development, process feasibility and process optimisation. For the polymeric material development, investigation of metallic and composite materials assessed each material’s suitability for selective composite formation besides residual material removal. The primary focus was the evaluation of proposed process feasibility. The authors applied multivariable methods, where the main responses were line width, penetration depth, residual material removal feasibility, layer adherence strength, mechanical strength and dimensional deviation of resultant object. The laser trace speed, distance between formation lines and laser diameter were the main variables. Removal agent and polymeric material formulation were constants. In the last part of this work, the authors applied a multi-objective optimisation. The optimisation objectives minimized processing time and dimensional deviation while maximizing mechanical strength in xy direction and mechanical strength in z direction.

Findings

With respect to material development, the polymeric material tensile strength was found between 30 and 45 MPa at break. It was also seen that this material has low viscosity before polymerized (between 2 and 20 cP) essential for composite formation and complete material removal. In that way, the authors also identified that the residual material removal process was possible by redox reaction. In contrast with that the final object was marked by the polymer which covers the metallic matrix, protecting the object protects against chemical reactions. For the feasibility study, the authors identified the process windows for adherence between composite layers, demonstrating the process feasibility. The composite mechanical strength was shown to be between 120 and 135 MPa in xy direction and between 35 and 45 MPa in z direction. In addition, the authors have also evidenced that the geometrical dimensional distortion might vary until 5 mm, depending on process configuration. Despite that, the authors identified an optimised configuration that exposes the potential application of this new technology. As this work is still in a preliminary development stage, further studies are needed to be done to better understand the process and market segments wherein it might be applied.

Originality/value

This paper proposed a new and innovative additive manufacturing technology which is based on metal-polymer composites using low power source. Additionally, this work also described studies related to the investigation of concept feasibility and proposed process characterisation. The authors have focused on material development and studied the functional feasibility, which at the same time might be useful to the development of other additive manufacturing processes.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1998

Peter Moran

In order for system designers to make full use of the successive generations of semiconductor devices it is becoming increasingly necessary to choose interconnection systems that…

Abstract

In order for system designers to make full use of the successive generations of semiconductor devices it is becoming increasingly necessary to choose interconnection systems that are tailored to the application. As this trend becomes more pronounced, the limitations of traditional methods of constructing boards onto which electronic components can be assembled are becoming more obvious. In this paper the application of selective electroplating, a technique that has been in use for many years but has not previously been fully exploited, is discussed. It is shown by examining a number of case studies that with a small amount of innovation this basic technique can be extended to meet the needs of a number of application areas while still operating within the normal processing windows of the materials.

Details

Microelectronics International, vol. 15 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 January 2012

Mushtaq Khan and Phill Dickens

Different metals have been processed using laser‐based solid freeform fabrication (SFF) processes but very little work has been published on the selective laser melting (SLM) of…

1866

Abstract

Purpose

Different metals have been processed using laser‐based solid freeform fabrication (SFF) processes but very little work has been published on the selective laser melting (SLM) of gold (Au). The purpose of this paper is to check the properties of gold powder and identify suitable processing parameters for SLM of 24 carat gold powder.

Design/methodology/approach

A full factorial approach was used to vary the processing parameters and identify suitable processing region for gold powder. The effects of laser processing parameters on the internal porosity of the multi‐layer parts were examined.

Findings

The gold powder was found to be cohesive in nature with apparent and tap densities of 9.3 and 10.36 g/cm3, respectively. The reflectance of gold powder was found to be 85 per cent in the infrared range. A very narrow good melting region was identified for gold powder. The balling phenomenon was observed at both low and high scan speeds. The size of droplets in the balling region tended to increase with increasing laser power and decreasing scan speeds. The porosity in gold multi‐layer parts was found to be the minimum for a laser power of 50 W and scan speed of 65 mm/s where most of the porosity was found to be inter‐layer porosity.

Originality/value

This research is the first of its kind directly processing 24 carat gold using SLM, identifying the suitable processing parameters and its effect on the internal porosity and structure of multi‐layer parts.

Details

Rapid Prototyping Journal, vol. 18 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2004

Samuel Bodily and Sankaran Venkataraman

Much of strategy has been about defense, building the largest castle with the thickest walls to defend position, and tying down the customer with switching costs, standards, and…

2531

Abstract

Much of strategy has been about defense, building the largest castle with the thickest walls to defend position, and tying down the customer with switching costs, standards, and transaction costs. The digital age changed that, making ineffective the usual competitive advantages of size and scope, infrastructure, and the former capabilities. The metaphor has moved from walls to windows: for transparency, fresh air, connection, and some protection from the harsher elements. A proactive windows strategy assembles scale and scope collaboratively, creates relationships that make switching unattractive, develops intangible resources all along the value chain, and builds co‐specialized capabilities. Illustrative examples come from three companies that have thrived in the digital age: eBay (a new company and industry), Lending Tree (new in an old industry), and Charles Schwab (old in an old industry).

Details

Journal of Business Strategy, vol. 25 no. 3
Type: Research Article
ISSN: 0275-6668

Keywords

Article
Publication date: 5 October 2010

Florencia Edith Wiria, Kah Fai Leong and Chee Kai Chua

Tissue engineering (TE) involves biological, medical and engineering expertise and a current engineering challenge is to provide good TE scaffolds. These highly porous 3D…

1822

Abstract

Purpose

Tissue engineering (TE) involves biological, medical and engineering expertise and a current engineering challenge is to provide good TE scaffolds. These highly porous 3D scaffolds primarily serve as temporal holding devices for cells that facilitate structural and functional tissue unit formation of the newly transplanted cells. One method used successfully to produce scaffolds is that of rapid prototyping. Selective laser sintering (SLS) is one such versatile method that is able to process many types of polymeric materials and good stability of its products. The purpose of this paper is to present modeling of the heat transfer process, to understand the sintering phenomena that are experienced by powder particles in the SLS powder bed during the sintering process. With the understanding of sintering process obtained through the theoretical modeling, experimental process of biomaterials in SLS could be directed towards the appropriate sintering window, so as not to cause unintentional degradation to the biomaterials.

Design/methodology/approach

SLS uses a laser as a heat source to sinter parts. A theoretical study based on heat transfer phenomena during SLS process was carried out. The study identified the significant biomaterial and laser beam properties that were critical to the sintering result. The material properties were thermal conductivity, thermal diffusivity, surface reflectivity and absorption coefficient.

Findings

The influential laser beam properties were laser power and scan speed, which were machine parameters that can be controlled by users. The identification of the important parameters has ensured that favorable sintering conditions can be achieved.

Research limitations/implications

The selection of biopolymer influences the manner in which energy is absorbed by the powder bed during the SLS process. In this paper, the modeling and investigative work was validated by poly(vinyl alcohol) which is a biomaterial that has been used for many biomedical and pharmaceutical purposes.

Practical implications

The paper can be the foundation for extension to other types of biomaterials including biopolymers, bioceramics and biocomposites.

Originality/value

The formulation of the theory for heat transfer phenomena during the SLS process is of significant value to any studies in using SLS for biomedical applications.

Details

Rapid Prototyping Journal, vol. 16 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 2003

Sugjoon Yoon

For realistic simulation of off‐road vehicles terrain surfaces have to be modeled in detail, and wheel‐surface contacting geometry must be well defined in order to obtain proper…

Abstract

For realistic simulation of off‐road vehicles terrain surfaces have to be modeled in detail, and wheel‐surface contacting geometry must be well defined in order to obtain proper ground‐reaction and friction forces. Delaunay triangulation is one of the most widely used methods in modeling 3D terrain surfaces, and triangle‐search (T‐search) is a relevant algorithm for searching resultant triangular polygons. The T‐search method searches polygons in successive order and may not allow real‐time computation of off‐road vehicle dynamics if the terrain is modeled with many polygons, depending on the computer performance used in the simulation. Dynamic T‐search, which is proposed in this paper, combines conventional T‐search and the concept of a dynamic window, which is a moving subset of the database and where an actual search is made at each frame, by taking advantage of the information regarding dynamic characteristics of a simulated vehicle. Numerical tests show improvement of searching speeds by about 5 percent for randomly distributed triangles. For continuous searches along a vehicle path, which actually occur in a vehicle simulation, the searching speed of the new method becomes four times faster than the conventional one.

Details

Engineering Computations, vol. 20 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 October 2018

Yinmin (Morris) Wang, Chandrika Kamath, Thomas Voisin and Zan Li

Density optimization is the first critical step in building additively manufactured parts with high-quality and good mechanical properties. The authors developed an approach that…

1354

Abstract

Purpose

Density optimization is the first critical step in building additively manufactured parts with high-quality and good mechanical properties. The authors developed an approach that combines simulations and experiments to identify processing parameters for high-density Ti-6Al-4V using the laser powder-bed-fusion technique. A processing diagram based on the normalized energy density concept is constructed, illustrating an optimized processing window for high- or low-density samples. Excellent mechanical properties are obtained for Ti-6Al-4V samples built from the optimized window.

Design/methodology/approach

The authors use simple, but approximate, simulations and selective experiments to design parameters for a limited set of single track experiments. The resulting melt-pool characteristics are then used to identify processing parameters for high-density pillars. A processing diagram is built and excellent mechanical properties are achieved in samples built from this window.

Findings

The authors find that the laser linear input energy has a much stronger effect on the melt-pool depth than the melt-pool width. A processing diagram based on normalized energy density and normalized hatch spacing was constructed, qualitatively indicating that high-density samples are produced in a region when 1 < E* < 2. The onset of void formation and low-density samples occur as E* moves beyond a value of 2. The as-built SLM Ti-6Al-4V shows excellent mechanical performance.

Originality/value

A combined approach of computer simulations and selected experiments is applied to optimize the density of Ti-6Al-4V, via laser powder-bed-fusion (L-PBF) technique. A series of high-density samples are achieved. Some special issues are identified for L-PBF processes of Ti-6Al-4V, including the powder particle sticking and part swelling issues. A processing diagram is constructed for Ti-6Al-4V, based on the normalized energy density and normalized hatch spacing concept. The diagram illustrates windows with high- and low-density samples. Good mechanical properties are achieved during tensile tests of near fully dense Ti-6Al-4V samples. These good properties are attributed to the success of density optimization processes.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 December 2018

Christoph R. Pobel, Fuad Osmanlic, Matthias A. Lodes, Sebastian Wachter and Carolin Körner

Selective electron beam melting (SEBM) is a highly versatile powder bed fusion additive manufacturing method. SEBM is characterized by high energy densities which can be applied…

Abstract

Purpose

Selective electron beam melting (SEBM) is a highly versatile powder bed fusion additive manufacturing method. SEBM is characterized by high energy densities which can be applied with nearly inertia free beam deflection at high speeds (<8.000 m/s). This paper aims to determine processing maps for Ti-6Al-4V on an Arcam Q10 machine with LaB6 cathode design.

Design/methodology/approach

Scan line spacings of 100, 50 and 20 µm in a broad parameter range, focusing on high deflection and build speeds are investigated.

Findings

There are broad processing windows for dense parts without surface flaws for all scan line spacings which are defined by the total energy input and the area melting velocity.

Originality/value

The differences and limitations are discussed taking into account the beam properties at high beam energy and velocity as well as evaporation related loss of alloying components.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000