Search results

1 – 10 of 14
Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 20 March 2024

Alexandra Frank and Dalena Dillman Taylor

Post-COVID-19, public K–12 schools are still facing the consequences of the years of interrupted learning. Schools serving minoritized students are particularly at risk for facing…

Abstract

Purpose

Post-COVID-19, public K–12 schools are still facing the consequences of the years of interrupted learning. Schools serving minoritized students are particularly at risk for facing challenges with academics, behavior and student social emotional health. The university counseling programs are in positions to build capacity in urban schools while also supporting counselors-in-training through service-learning opportunities.

Design/methodology/approach

The following conceptual manuscript demonstrates how counselor education counseling programs and public schools can harness the capacity-building benefits of university–school partnerships. While prevalent in fields like special education, counselor educators have yet to heed the hall to participate in mutually beneficial partnership programs.

Findings

Using the multi-tiered systems of support (MTSS) and the components of the university–school partnerships, counselor educators and school stakeholders can work together to support student mental health, school staff well-being and counselor-in-training competence.

Originality/value

The benefits and opportunities within the university–school partnerships are well documented. However, few researchers have described a model to support partnerships between the university counseling programs and urban elementary schools. We provide a best practice model using the principles of university–school partnerships and a school’s existing MTSS framework.

Details

School-University Partnerships, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1935-7125

Keywords

Open Access
Article
Publication date: 9 April 2020

Xiaodong Zhang, Ping Li, Xiaoning Ma and Yanjun Liu

The operating wagon records were produced from distinct railway information systems, which resulted in the wagon routing record with the same oriental destination (OD) was…

Abstract

Purpose

The operating wagon records were produced from distinct railway information systems, which resulted in the wagon routing record with the same oriental destination (OD) was different. This phenomenon has brought considerable difficulties to the railway wagon flow forecast. Some were because of poor data quality, which misled the actual prediction, while others were because of the existence of another actual wagon routings. This paper aims at finding all the wagon routing locus patterns from the history records, and thus puts forward an intelligent recognition method for the actual routing locus pattern of railway wagon flow based on SST algorithm.

Design/methodology/approach

Based on the big data of railway wagon flow records, the routing metadata model is constructed, and the historical data and real-time data are fused to improve the reliability of the path forecast results in the work of railway wagon flow forecast. Based on the division of spatial characteristics and the reduction of dimension in the distributary station, the improved Simhash algorithm is used to calculate the routing fingerprint. Combined with Squared Error Adjacency Matrix Clustering algorithm and Tarjan algorithm, the fingerprint similarity is calculated, the spatial characteristics are clustering and identified, the routing locus mode is formed and then the intelligent recognition of the actual wagon flow routing locus is realized.

Findings

This paper puts forward a more realistic method of railway wagon routing pattern recognition algorithm. The problem of traditional railway wagon routing planning is converted into the routing locus pattern recognition problem, and the wagon routing pattern of all OD streams is excavated from the historical data results. The analysis is carried out from three aspects: routing metadata, routing locus fingerprint and routing locus pattern. Then, the intelligent recognition SST-based algorithm of railway wagon routing locus pattern is proposed, which combines the history data and instant data to improve the reliability of the wagon routing selection result. Finally, railway wagon routing locus could be found out accurately, and the case study tests the validity of the algorithm.

Practical implications

Before the forecasting work of railway wagon flow, it needs to know how many kinds of wagon routing locus exist in a certain OD. Mining all the OD routing locus patterns from the railway wagon operating records is helpful to forecast the future routing combined with the wagon characteristics. The work of this paper is the basis of the railway wagon routing forecast.

Originality/value

As the basis of the railway wagon routing forecast, this research not only improves the accuracy and efficiency for the railway wagon routing forecast but also provides the further support of decision-making for the railway freight transportation organization.

Details

Smart and Resilient Transportation, vol. 2 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 1 September 2022

Oluseyi Julius Adebowale and Justus Ngala Agumba

Despite the significance of the construction industry to the nation's economic growth, there is empirical evidence that the sector is lagging behind other industries in terms of…

4323

Abstract

Purpose

Despite the significance of the construction industry to the nation's economic growth, there is empirical evidence that the sector is lagging behind other industries in terms of productivity growth. The need for improvements inspired the industry's stakeholders to consider using emerging technologies that support the enhancement. This research aims to report augmented reality applications essential for contractors' productivity improvement.

Design/methodology/approach

This study systematically reviewed academic journals. The selection of journal articles entailed searching Scopus and Web of Science databases. Relevant articles for reviews were identified and screened. Content analysis was used to classify key applications into six categories. The research results were limited to journal articles published between 2010 and 2021.

Findings

Augmented reality can improve construction productivity through its applications in assembly, training and education, monitoring and controlling, interdisciplinary function, health and safety and design information.

Originality/value

The research provides a direction for contractors on key augmented reality applications they can leverage to improve their organisations' productivity.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 17 January 2023

Xing Ying

The purpose of this paper investigates dynamic ease distributions of clothes at bust and waist lines with different body surface angle by using a Qualisys three-dimensional motion…

Abstract

Purpose

The purpose of this paper investigates dynamic ease distributions of clothes at bust and waist lines with different body surface angle by using a Qualisys three-dimensional motion capture system (3DMCS).

Design/methodology/approach

The current method first obtain the specific markers of participants and their clothes along the bust and waist lines through 3DMCS, then using the least square method and four piecewise polynomial fitting participants and their clothes' bust and waist curves. The coordinates of the markers were tracked by the 3DMCS, while the participants under different body surface angle walked on a treadmill calculated the distances of markers coordinates to the participants' bust and waist curves. Finally, the data of samples were analyzed. It was found that the dynamic ease distributions showed different patterns at different body surface angle.

Findings

The results revealed the bust convex angle is 26.53 degrees (Specification:X3) and back slope angle is 13.96 degrees (Specification: Y1), the fluctuation of participant ease distributions on bust section was most obvious, and the maximum fluctuation value was ±20 mm and ±25 mm. The ease distributions of participant waist section fluctuated most obviously when the bust convex angle is 28.10 degrees (Specification: X5) and the back slope angle is 13.96 degrees (Specification: Y1), and the maximum fluctuation was ±30 mm and ±20 mm. The bust convex angle has the greatest influence on 1# garment, and the back slope angle has the greatest influence on 2# garment.

Originality/value

Currently, there is little information in the literature about dynamic ease distributions of garment on a different body types. This paper takes different body surface angles as the research objects to analyze the ease distributions of different clothes, the conclusion can provide reference data for 3D garment modeling and improve the authenticity of virtual garment fitting.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 7 June 2023

Ping Li, Yi Liu and Sai Shao

This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.

Abstract

Purpose

This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.

Design/methodology/approach

Based on the analysis for the future development trends of world railway, combined with the actual development needs in China high-speed railway, The definition and scientific connotation of intelligent high-speed railway (IHSR) are given at first, and then the system architecture of IHSR are outlined, including 1 basic platform, 3 business sectors, 10 business fields, and 18 innovative applications. At last, a basic platform with cloud edge integration for IHSR is designed.

Findings

The rationality, feasibility and implementability of the system architecture of IHSR have been verified on and applied to the Beijing–Zhangjiakou high-speed railway, providing important support for the construction and operation of the world’s first IHSR.

Originality/value

This paper systematically gives the definition and connotation of the IHSR and put forward the system architecture of IHSR for first time. It will play the most important role in the design, construction and operation of IHSR.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 4 December 2017

Natalie Ishmael, Anura Fernando, Sonja Andrew and Lindsey Waterton Taylor

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of…

6964

Abstract

Purpose

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of combining yarn interlocking with yarn interlooping.

Design/methodology/approach

The paper describes the key textile technologies used for composite manufacture: braiding, weaving and knitting. The various textile preforming methods are suited to different applications; their capabilities and end performance characteristics are analysed.

Findings

Such preforms are used in composites in a wide range of industries, from aerospace to medical and automotive to civil engineering. The paper highlights how the use of knitting technology for preform manufacture has gained wider acceptance due to its flexibility in design and shaping capabilities. The tensile properties of glass fibre knit structures containing inlay yarns interlocked between knitted loops are given, highlighting the importance of reinforcement yarns.

Originality/value

The future trends of reinforcement yarns in knitted structures for improved tensile properties are discussed, with initial experimental data.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 24 January 2022

Philip Andrews-Speed, Xiangyang Xu, Dingfei Jie, Siyuan Chen and Mohammad Usman Zia

This paper aims to identify the factors that are constraining technological innovation to support the development of coalbed methane in China.

Abstract

Purpose

This paper aims to identify the factors that are constraining technological innovation to support the development of coalbed methane in China.

Design/methodology/approach

The analysis applies ideas relating to national and sector systems of innovation to explain why China’s strategies to support research and technological innovation have failed to stimulate the desired progress in coalbed methane production. It also provides a counter-example of the USA that implemented a number of measures in the 1970s that proved very effective.

Findings

The deficiencies of China’s research and development strategies in support of coalbed methane development reflect the national and sectoral systems of innovation. They are exacerbated by the structure of the national oil and gas industry. Key constraints include the excessively top-down management of the national R&D agenda, insufficient support for basic research, limited collaboration networks between companies, research institutes and universities and weak mechanisms for diffusion of knowledge. The success of the USA was based on entirely different systems for innovation and in quite a different industrial setting.

Originality/value

The originality of this analysis lies in placing the challenges facing research and innovation for China’s coalbed methane development in the context of the national and sectoral systems for innovation and comparing with the approach and success of the USA.

Details

Journal of Science and Technology Policy Management, vol. 14 no. 3
Type: Research Article
ISSN: 2053-4620

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 13 June 2023

Eugenia Rosca and Kelsey M. Taylor

This paper examines how different configurations of societal impact are pursued by purpose-driven organizations (PDOs) and how these configurations align with the application of…

1608

Abstract

Purpose

This paper examines how different configurations of societal impact are pursued by purpose-driven organizations (PDOs) and how these configurations align with the application of varying supply chain design (SCD) practices.

Design/methodology/approach

This multi-method study uses quantitative data from 1588 B Corps and qualitative data from 316 B Corps to examine how PDOs align SCD with the pursuit of diverse types of societal impact. The authors first conduct a cluster analysis to group organizations based on the impact they create. Second, qualitative content analysis connects impact with enabling SCD elements.

Findings

The analysis of the five identified clusters provides detailed empirical insights on influencers, design decisions and building blocks adopted by PDOs to drive a range of societal impacts. Specifically, the nature of the impact pursued affects (1) whether a PDO will be more influenced by a need in the political environment or an opportunity in the industry environment, (2) the relative importance of the design of social flows versus material flows and (3) the need to develop new relational resources with beneficiaries versus leveraging existing capabilities to manage inter-firm processes.

Originality/value

This study responds to calls to disaggregate different dimensions of societal impact and examines the relationship between SCD and a breadth of sustainability impacts for different stakeholders. In doing so, the authors identify four SCD pathways organizations can follow to achieve specific societal impacts. This study is also the first to employ a supply chain perspective in the study of certified B Corps.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

1 – 10 of 14