Search results

1 – 10 of over 1000
Article
Publication date: 16 June 2023

Chirag Suresh Sakhare, Sayan Chakraborty, Sarada Prasad Sarmah and Vijay Singh

Original equipment manufacturers and other manufacturing companies rely on the delivery performance of their upstream suppliers to maintain a steady production process. However…

Abstract

Purpose

Original equipment manufacturers and other manufacturing companies rely on the delivery performance of their upstream suppliers to maintain a steady production process. However, supplier capacity uncertainty and delayed delivery often poses a major concern to manufacturers to carry out their production plan as per the desired schedules. The purpose of this paper is to develop a decision model that can improve the delivery performance of suppliers to minimise fluctuations in the supply quantity and the delivery time and thus maximising the performance of the supply chain.

Design/methodology/approach

The authors studied a single manufacturer – single supplier supply chain considering supplier uncertain capacity allocation and uncertain time of delivery. Mathematical models are developed to capture expected profit of manufacturer and supplier under this uncertain allocation and delivery behaviour of supplier. A reward–penalty mechanism is proposed to minimise delivery quantity and time of delivery fluctuations from the supplier. Further, an order-fulfilment heuristic based on delivery probability is developed to modify the order quantity which can maximise the probability of a successful deliveries from the supplier.

Findings

Analytical results reveal that the proposed reward–penalty mechanism improves the supplier delivery consistency. This consistent delivery performance helps the manufacturer to maintain a steady production schedule and high market share. Modified ordering schedule developed using proposed probability-based heuristic improves the success probability of delivery from the supplier.

Practical implications

Practitioners can benefit from the findings of this study to comprehend how contracts and ordering policy can improve the supplier delivery performance in a manufacturing supply chain.

Originality/value

This paper improves the supplier delivery performance considering both the uncertain capacity allocation and uncertain time of delivery.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 6 February 2024

Moslem Sheikhkhoshkar, Hind Bril El Haouzi, Alexis Aubry and Farook Hamzeh

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control…

Abstract

Purpose

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control metrics have been devised and put into practice, often with little emphasis on analyzing their underlying concepts. To cover this gap, this research aims to identify and analyze a holistic list of control metrics and their functionalities in the construction industry.

Design/methodology/approach

A multi-step analytical approach was conducted to achieve the study’s objectives. First, a holistic list of control metrics and their functionalities in the construction industry was identified. Second, a quantitative analysis based on social network analysis (SNA) was implemented to discover the most important functionalities.

Findings

The results revealed that the most important control metrics' functionalities (CMF) could differ depending on the type of metrics (lagging and leading) and levels of control. However, in general, the most significant functionalities include managing project progress and performance, evaluating the look-ahead level’s performance, measuring the reliability and stability of workflow, measuring the make-ready process, constraint management and measuring the quality of construction flow.

Originality/value

This research will assist the project team in getting a comprehensive sensemaking of planning and control systems and their functionalities to plan and control different dynamic aspects of the project.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 June 2023

Wahib Saif and Adel Alshibani

This paper aims to present a highly accessible and affordable tracking model for earthmoving operations in an attempt to overcome some of the limitations of current tracking…

Abstract

Purpose

This paper aims to present a highly accessible and affordable tracking model for earthmoving operations in an attempt to overcome some of the limitations of current tracking models.

Design/methodology/approach

The proposed methodology involves four main processes: acquiring onsite terrestrial images, processing the images into 3D scaled cloud data, extracting volumetric measurements and crew productivity estimations from multiple point clouds using Delaunay triangulation and conducting earned value/schedule analysis and forecasting the remaining scope of work based on the estimated performance. For validation, the tracking model was compared with an observation-based tracking approach for a backfilling site. It was also used for tracking a coarse base aggregate inventory for a road construction project.

Findings

The presented model has proved to be a practical and accurate tracking approach that algorithmically estimates and forecasts all performance parameters from the captured data.

Originality/value

The proposed model is unique in extracting accurate volumetric measurements directly from multiple point clouds in a developed code using Delaunay triangulation instead of extracting them from textured models in modelling software which is neither automated nor time-effective. Furthermore, the presented model uses a self-calibration approach aiming to eliminate the pre-calibration procedure required before image capturing for each camera intended to be used. Thus, any worker onsite can directly capture the required images with an easily accessible camera (e.g. handheld camera or a smartphone) and can be sent to any processing device via e-mail, cloud-based storage or any communication application (e.g. WhatsApp).

Article
Publication date: 8 March 2024

Satyajit Mahato and Supriyo Roy

Managing project completion within the stipulated time is significant to all firms' sustainability. Especially for software start-up firms, it is of utmost importance. For any…

Abstract

Purpose

Managing project completion within the stipulated time is significant to all firms' sustainability. Especially for software start-up firms, it is of utmost importance. For any schedule variation, these firms must spend 25 to 40 percent of the development cost reworking quality defects. Significantly, the existing literature does not support defect rework opportunities under quality aspects among Indian IT start-ups. The present study aims to fill this niche by proposing a unique mathematical model of the defect rework aligned with the Six Sigma quality approach.

Design/methodology/approach

An optimization model was formulated, comprising the two objectives: rework “time” and rework “cost.” A case study was developed in relevance, and for the model solution, we used MATLAB and an elitist, Nondominated Sorting Genetic Algorithm (NSGA-II).

Findings

The output of the proposed approach reduced the “time” by 31 percent at a minimum “cost”. The derived “Pareto Optimal” front can be used to estimate the “cost” for a pre-determined rework “time” and vice versa, thus adding value to the existing literature.

Research limitations/implications

This work has deployed a decision tree for defect prediction, but it is often criticized for overfitting. This is one of the limitations of this paper. Apart from this, comparing the predicted defect count with other prediction models hasn’t been attempted. NSGA-II has been applied to solve the optimization problem; however, the optimal results obtained have yet to be compared with other algorithms. Further study is envisaged.

Practical implications

The Pareto front provides an effective visual aid for managers to compare multiple strategies to decide the best possible rework “cost” and “time” for their projects. It is beneficial for cost-sensitive start-ups to estimate the rework “cost” and “time” to negotiate with their customers effectively.

Originality/value

This paper proposes a novel quality management framework under the Six Sigma approach, which integrates optimization of critical metrics. As part of this study, a unique mathematical model of the software defect rework process was developed (combined with the proposed framework) to obtain the optimal solution for the perennial problem of schedule slippage in the rework process of software development.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 24 November 2023

Carla Maria Freitas Da Costa Freire and Lídia Costa Alves

The experience of working from home, which people had to deal with in the aftermath of the global pandemic crisis, was a test of resilience and does not necessarily have to be…

Abstract

Purpose

The experience of working from home, which people had to deal with in the aftermath of the global pandemic crisis, was a test of resilience and does not necessarily have to be analysed in a negative light. In this sense, this study aims to analyse the impact of the perceived schedule flexibility, in the context of telework, on stress and satisfaction with family life among academic staff. To this end, a model was implemented to analyse the mediation role of family–work conflict.

Design/methodology/approach

Data was collected from 248 questionnaires presented to educators and office staff at universities when teleworking was initiated due to the pandemic confinement. Structural equation analysis was designed to test the study hypotheses.

Findings

By applying a model which uses the effect of mediation of the family–work conflict, the results revealed that the perception of flexibility resulting from telework influences stress at work, as well as satisfaction with family life among academic staff.

Originality/value

There is a need to study the conditions required in the implementation of telework. This study is specifically intended to deepen some of the findings of previous studies in this area and to provide a greater understanding of how perceived flexibility can contribute to a decrease in stress and higher levels of satisfaction by reducing family interference with work.

Details

International Journal of Organizational Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1934-8835

Keywords

Open Access
Article
Publication date: 8 June 2023

Amer Jazairy, Timo Pohjosenperä, Jaakko Sassali, Jari Juga and Robin von Haartman

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

1689

Abstract

Purpose

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

Design/methodology/approach

Theory of Planned Behavior (TPB) is illustrated in an embedded, single-case study of a Finnish carrier with 17 of its truck drivers. Data are obtained through in-depth interviews with drivers, their fuel-efficiency scores generated by fleet telematics and a focus group session with the management.

Findings

Discrepancies between drivers’ intentions and eco-driving behaviors are illustrated in a two-by-two matrix that classifies drivers into four categories: ideal eco-drivers, wildcards, wannabes and non-eco-drivers. Attitudes, subjective norms and perceived behavioral control are examined for drivers within each category, revealing that drivers’ perceptions did not always align with the reality of their driving.

Research limitations/implications

This study strengthens the utility of TPB through data triangulation while also revealing the theory’s inherent limitations in elucidating the underlying causes of its three antecedents and their impact on the variance in driving behaviors.

Practical implications

Managerial insights are offered to fleet managers and eco-driving solution providers to stipulate the right conditions for drivers to enhance fuel-efficiency outcomes of transport fleets.

Originality/value

This is one of the first studies to give a voice to professional truck drivers about their daily eco-driving practice.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 11
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

181

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 14 December 2022

Bryan Pieterse, Kofi Agyekum, Patrick Manu, Saeed Reza Mohandes, Clara Cheung and Akilu Yunusa-Kaltungo

Major maintenance projects are often regarded as maintenance activities regardless of the projects' complexity and scale. Consequently, very scarce research attention has hitherto…

Abstract

Purpose

Major maintenance projects are often regarded as maintenance activities regardless of the projects' complexity and scale. Consequently, very scarce research attention has hitherto been paid to the critical skills required when undertaking these projects. More specifically, the body of relevant knowledge is deprived of a study focusing on maintenance projects within the energy sector. In view of this shortcoming, this research aims to examine the critical project management (PM) skills required to deliver major maintenance projects within the energy sector.

Design/methodology/approach

Based on a quantitative research strategy, this study addressed the knowledge gap through a cross-sectional survey of professionals involved in the delivery of major maintenance projects in the United Kingdom's (UK) energy sector. Data obtained were analyzed via descriptive (e.g. frequencies, mean and standard deviation [SD]) and inferential statistical analyses (One sample t-test and exploratory factor analysis (EFA)).

Findings

Out of the 45 PM skills identified in the literature and examined by the respondents, the results obtained from the One sample t-test (based on p (1-tailed) = 0.05) showed that 37 were considered to be at least “important,” accounting for 80.4% of all the skills identified. EFA revealed a clustering of the PM skills items into seven components: “skills related to work scheduling and coordination”; “communication, risk, safety and stakeholder management skills”; “quality assurance skills”; “people management skills”; “skills related to forecasting scope and duration of outage”; “implementation of processes and time management skills” and “technical/engineering skills and experience pertaining to the outage and local site knowledge.”

Originality/value

This study has identified and contributed to the limited state-of-the-art skills project managers must possess to manage major maintenance projects in the energy sector successfully. The findings would be useful to organizations within the energy sector in ensuring that the organizations have suitable personnel in place to deliver major maintenance projects on the organizations' assets.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000