Search results

11 – 20 of over 6000
Article
Publication date: 14 May 2020

Nabeena Ameen, Najumnissa Jamal and Arun Raj

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but…

Abstract

Purpose

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but because of sensor's resource limitations and other prerequisites, optimal dual route discovery becomes an issue of concern. WSN along with central sink node is capable of handling wireless transmission, thus optimizing the network's lifetime by selecting the dual path. The major problem confronted in the application of security mechanisms in WSNs is resolving the issues amid reducing consumption of resources and increases security.

Design/methodology/approach

According to the proposed system, two metrics, namely, path length and packets delivery ratio are incorporated for identifying dual routes amid the source and destination. Thereafter by making use of the distance metric, the optimal dual route is chosen and data transmission is carried out amid the nodes. With the usage of the recommended routing protocol high packet delivery ratio is achieved with reduced routing overhead and low average end to end delay. It is clearly portrayed in the simulation output that the proposed on demand dual path routing protocol surpasses the prevailing routing protocol. Moreover, security is achieved make use of in accord the data compression reduces the size of the data. With the help of dual path, mathematical model of Finite Automata Theory is derived to transmit data from source to destination. Finite Automata Theory comprises Deterministic Finite Automata (DFA) that is being utilized for Dual Path Selection. In addition, data transition functions are defined for each input stage. In this proposed work, another mathematical model is 10; introduced to efficiently choose an alternate path between a receiver and transmitter for data transfer with qualified node as relay node using RR Algorithm. It also includes Dynamic Mathematical Model for Node Localization to improve the precision in location estimation using Node Localization Algorithm. As a result a simulator is built and various scenarios are elaborated for comparing the performance of the recommended dual path routing protocol with respect to the prevailing ones.

Findings

Reliability and fault-tolerance: The actual motive in utilizing the approach of multipath routing in sensor network was to offer path resilience in case of a node or link failures thus ascertaining reliable transmission of data. Usually in a fault tolerant domain, when the sensor node is unable to forward the data packets to the sink, alternative paths can be utilized for recovering its data packets during the failure of any link/node. Load balancing: Load balancing involves equalizing energy consumption of all the existing nodes, thereby degrading them together. Load balancing via clustering improves network scalability. The network's lifetime as well as reliability can be extended if varied energy level's nodes exist in sensor node. Quality of service (QoS): Improvement backing of quality of service with respect to the data delivery ratio, network throughput and end-to-end latency stands very significant in building multipath routing protocols for various network types. Reduced delay: There is a reduced delay in multipath routing since the backup routes are determined at the time of route discovery. Bandwidth aggregation: By dividing the data toward the same destination into multiple streams (by routing all to a separate path) can aggregate the effective bandwidth. The benefit being that, in case a node possesses many links with low bandwidth, it can acquire a bandwidth which is more compared to the individual link.

Research limitations/implications

Few more new algorithms can be used to compare the QoS parameters.

Practical implications

Proposed mechanism with feedback ascertains improvised delivery ratio compared to the single path protocol since in case of link failure, the protocol has alternative route. In case there are 50 nodes in the network, the detection mechanism yields packet delivery of 95% and in case there are 100 nodes, the packet delivery is lowered to 89%. It is observed that the packet rate in the network is more for small node range. When the node count is 200, the packet ratio is low, which is lowered to 85%. With a node count of 400, the curve depicts the value of 87%. Hence, even with a decrease in value, it is superior than the existing protocols. The average end-to-end delay represents the transmission delay of the data packets that have been successfully delivered as depicted in Figure 6 and Table 3. The recommended system presents the queue as well as the propagation delay from the source to destination. The figure depicts that when compared to the single path protocol, the end-to-end delay can be reduced via route switching. End-to-end delay signifies the time acquired for the delay in the receival of the the retransmitted packet by each node. The comparison reveals that the delay was lower compared to the existing ones in the WSN. Proposed protocol aids in reducing consumption of energy in transmitter, receiver and various sensors. Comparative analysis of energy consumptions of the sensor in regard to the recommended system must exhibit reduced energy than the prevailing systems.

Originality/value

On demand dual path routing protocol. Hence it is verified that the on demand routing protocol comprises DFA algorithms determines dual path. Here mathematical model for routing between two nodes with relay node is derived using RR algorithm to determine alternate path and thus reduce energy consumption. Another dynamic mathematical model for node localization is derived using localization algorithm. For transmitting data with a secure and promising QoS in the WSNs, the routing optimization technique has been introduced. The simulation software environment follows the DFA. The simulation yields in improvised performance with respect to packet delivery ratio, throughput, average end-to-end delay and routing overhead. So, it is proved that the DFA possesses the capability of optimizing the routing algorithms which facilitates the multimedia applications over WSNs.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 11 June 2018

Abdesselem Beghriche and Azeddine Bilami

Security is one of the major challenges in the design and implementation of protocols for mobile ad hoc networks (MANETs). In such systems, the cooperation between nodes is one of…

Abstract

Purpose

Security is one of the major challenges in the design and implementation of protocols for mobile ad hoc networks (MANETs). In such systems, the cooperation between nodes is one of the important principles being followed in the current research works to formulate various security protocols. Many existing works assume that mobile nodes will follow prescribed protocols without deviation. However, this is not always the case, because these networks are subjected to a variety of malicious attacks. Since there are various models of attack, trust routing scheme can guarantee security and trust of the network. The purpose of this paper is to propose a novel trusted routing model for mitigating attacks in MANETs.

Design/methodology/approach

The proposed model incorporates the concept of trust into the MANETs and applies grey relational analysis theory combined with fuzzy sets to calculate a node’s trust level based on observations from neighbour nodes’ trust level, these trust levels are then used in the routing decision-making process.

Findings

In order to prove the applicability of the proposed solution, extensive experiments were conducted to evaluate the efficiency of the proposed model, aiming at improving the network interaction quality, malicious node mitigation and enhancements of the system’s security.

Originality/value

The proposed solution in this paper is a new approach combining the fundamental basics of fuzzy sets with the grey theory, where establishment of trust relationships among participating nodes is critical in order to enable collaborative optimisation of system metrics. Experimental results indicate that the proposed method is useful for reducing the effects of malicious nodes and for the enhancements of system’s security.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 May 2023

Ishita Seth, Kalpna Guleria and Surya Narayan Panda

The internet of vehicles (IoV) communication has recently become a popular research topic in the automotive industry. The growth in the automotive sector has resulted in…

32

Abstract

Purpose

The internet of vehicles (IoV) communication has recently become a popular research topic in the automotive industry. The growth in the automotive sector has resulted in significant standards and guidelines that have engaged various researchers and companies. In IoV, routing protocols play a significant role in enhancing communication safety for the transportation system. The high mobility of nodes in IoV and inconsistent network coverage in different areas make routing challenging. This paper aims to provide a lane-based advanced forwarding protocol for internet of vehicles (LAFP-IoV) for efficient data distribution in IoV. The proposed protocol’s main feature is that it can identify the destination zone by using position coordinates and broadcasting the packets toward the direction of destination. The novel suppression technique is used in the broadcast method to reduce the network routing overhead.

Design/methodology/approach

The proposed protocol considers the interferences between different road segments, and a novel lane-based forwarding model is presented. The greedy forwarding notion, the broadcasting mechanism, and the suppression approach are used in this protocol to reduce the overhead generated by standard beacon forwarding procedures. The SUMO tool and NS-2 simulator are used for the vehicle's movement pattern and to simulate LAFP-IoV.

Findings

The simulation results show that the proposed LAFP-IoV protocol performs better than its peer protocols. It uses a greedy method for forwarding data packets and a carry-and-forward strategy to recover from the local maximum stage. This protocol's low latency and good PDR make it ideal for congested networks.

Originality/value

The proposed paper provides a unique lane-based forwarding for IoV. The proposed work achieves a higher delivery ratio than its peer protocols. The proposed protocol considers the lanes while forwarding the data packets applicable to the highly dense scenarios.

Article
Publication date: 4 December 2020

M. Angulakshmi, M. Deepa, M. Vanitha, R. Mangayarkarasi and I. Nagarajan

In this study, we discuss three DTN routing protocols, these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic…

Abstract

Purpose

In this study, we discuss three DTN routing protocols, these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic network environment (ONE) to create a network environment. Spray and wait has highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others. This analysis of the performance of DTN protocols helps the researcher to learn better of these protocols in the different environment.

Design/methodology/approach

Delay-Tolerant Network (DTN) is a network designed to operate effectively over extreme distances, such as those encountered in space communications or on an interplanetary scale. In such an environment, nodes are occasional communication and are available among hubs, and determinations of the next node communications are not confirmed. In such network environment, the packet can be transferred by searching current efficient route available for a particular node. Due to the uncertainty of packet transfer route, DTN is affected by a variety of factors such as packet size, communication cost, node activity, etc.

Findings

Spray and wait have highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others.

Originality/value

The primary goal of the paper is to extend these works in an attempt to offer a better understanding of the behavior of different DTN routing protocols with delivery probability, latency and overhead ratio that depend on various amounts of network parameters such as buffer size, number of nodes, movement ratio, time to live, movement range, transmission range and message generation rate. In this study, we discuss three DTN routing protocols: these are epidemic, PRoPHET and spray and wait routing protocols. A special simulator will be used; that is opportunistic network environment (ONE) to create a network environment. Spray and wait have highest delivery rate and low latency in most of the cases. Hence, spray and wait have better performance than others. This analysis of the performance of DTN protocols helps the researcher to learn better of these protocols in the different environment.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 7 November 2016

Yahya M. Tashtoush, Mohammad A. Alsmirat and Tasneem Alghadi

The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad…

Abstract

Purpose

The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP).

Design/methodology/approach

GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area.

Findings

The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent.

Originality/value

This study is the first to propose to use of geometric sequence in the multipath routing approach.

Details

International Journal of Pervasive Computing and Communications, vol. 12 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 13 January 2022

Muniraju Naidu Vadlamudi and Asdaque Hussain M.D.

A wireless body area network (WBAN) plays a crucial role in the health-care domain. With the emergence of technologies like the internet of things, there is increased usage of…

Abstract

Purpose

A wireless body area network (WBAN) plays a crucial role in the health-care domain. With the emergence of technologies like the internet of things, there is increased usage of WBAN for providing quality health services. With wearable devices and sensors associated with human body, patient’s vital signs are captured and sent to doctor. The WBAN has number of sensor nodes that are resource constrained. The communications among the nodes are very crucial as human health information is exchanged. The purpose of this paper aims to have Quality of Service (QoS) with energy aware and control overhead aware. Maximizing network lifetime is also essential for the improved quality in services. There are many existing studies on QoS communications in WBAN.

Design/methodology/approach

In this paper, with the aim of energy-efficient WBAN for QoS, a cross-layer routing protocol is designed and implemented. A cross-layer routing protocol that is ad hoc on-demand distance vector (AODV)-based, energy and control overhead-aware (AODV-ECOA) is designed and implemented for energy-efficient routing in WBAN. The cross-layer design that involves multiple layers of open systems interconnection reference model, which will improve energy efficiency and thus QoS.

Findings

Implementation is simulated using the network simulator tool, i.e. NS-2. The proposed cross-layer routing protocol AODV-ECOA shows least bandwidth requirement by control packets, leading to less control overhead, highest packet delivery ratio and energy efficiency. The experimental results revealed that AODV-ECOA shows better performance over existing protocols such as AODV and POLITIC.

Originality/value

An efficient control overhead reduction algorithm is proposed for reducing energy consumption further and improves performance of WBAN communications to realize desired QoS.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 7 August 2019

Nadjib Benaouda and Ammar Lahlouhi

The purpose of this paper is to present a novel delay-bounded and power-efficient routing for in-network data aggregation, called DPIDA, which aims to ensure a compromise between…

Abstract

Purpose

The purpose of this paper is to present a novel delay-bounded and power-efficient routing for in-network data aggregation, called DPIDA, which aims to ensure a compromise between the energy consumed during the collection of data sensed by a set of source sensor nodes and their timely delivery to the sink node.

Design/methodology/approach

Based on the ant-colony-optimization metaheuristic, the proposal establishes a routing structure that maximizes the number of overlapping routes and minimizes the total transmission power while ensuring delay-bounded paths and a symmetric transmission power assignment to reliably deliver the sensed data.

Findings

The proposal was extensively compared to two other known protocols regarding different keys factors. Simulation results, including topology snapshots, show the ability of DPIDA to ensure the energy–latency tradeoff. They also show the superiority of DPIDA compared to the two considered protocols.

Originality/value

This paper presents a novel ant-based protocol that uses in-network data aggregation and transmission power-adjustment techniques to conserve the energy of nodes while ensuring delay-bounded paths and a reliable deliverance of data which is ensured by providing a symmetric transmission power assignment.

Details

International Journal of Pervasive Computing and Communications, vol. 15 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 30 March 2012

Antonio Liotta, Daniël Geelen, Gert van Kempen and Frans van Hoogstraten

At present the energy generation and distribution landscape is changing rapidly. The energy grid is becoming increasingly smart, relying on an information network for the purposes…

1087

Abstract

Purpose

At present the energy generation and distribution landscape is changing rapidly. The energy grid is becoming increasingly smart, relying on an information network for the purposes of monitoring and optimization. However, because of the particularly stringent regulatory and technical constraints posed by smart grids, it is not possible to use ordinary communication protocols. The purpose of this paper is to revisit such constraints, reviewing the various options available today to realize smart‐metering networks.

Design/methodology/approach

After describing the regulatory, technological and stakeholders' constraints, the authors provide a taxonomy of network technologies, discussing their suitability and weaknesses in the context of smart‐metering systems. The authors also give a snapshot of the current standardization panorama, identifying key differences among various geographical regions.

Findings

It is found that the field of smart‐metering networks still consists of a fragmented set of standards and solutions, leaving open a number of issues relating to the design and deployment of suitable systems.

Originality/value

This paper addresses the need to better understand state‐of‐the‐art and open issues in the fast‐evolving area of smart energy grids, with particular attention to the challenges faced by communication engineers.

Details

International Journal of Pervasive Computing and Communications, vol. 8 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Abstract

Details

Transforming Information Security
Type: Book
ISBN: 978-1-83909-928-1

Article
Publication date: 26 May 2020

Anupama Sharma, Abhay Bansal and Vinay Rishiwal

Quality communication is a big challenge in mobile ad hoc networks because of a restricted environment for mobile devices, bandwidth-constrained radio connections, random mobility…

Abstract

Purpose

Quality communication is a big challenge in mobile ad hoc networks because of a restricted environment for mobile devices, bandwidth-constrained radio connections, random mobility of connected devices, etc. High-quality communication through wireless links mainly depends on available bandwidth, link stability, energy of nodes, etc. Many researchers proposed stability and link quality methods to improve these issues, but they still require optimization. This study aims to contribute towards better quality communication in temporarily formed networks. The authors propose the stable and bandwidth aware dynamic routing (SBADR) protocol with the aim to provide an efficient, stable path with sufficient bandwidth and enough energy hold nodes for all types of quality of service (QoS) data communication.

Design/methodology/approach

The proposal made in this work used received signal strength from the media access control (MAC) layer to estimate the stability of the radio connection. The proposed path stability model combines the stability of the individual link to compute path stability. The amount of bandwidth available for communication at a specific time on a link is defined as the available link bandwidth that is understood as the maximum throughput of that link. Bandwidth as a QoS parameter ensures high-quality communication for every application in such a network. One other improvement, towards quality data transmission, is made by incorporating residual energies of communicating and receiving nodes in the calculation of available link bandwidth.

Findings

Communication quality in mobile ad hoc network (MANET) does not depend on a single parameter such as bandwidth, energy, path stability, etc. To address and enhance quality communication, this paper focused on high impact factors, such as path stability, available link bandwidth and energy of nodes. The performance of SBADR is evaluated on the network simulator and compared with that of other routing protocols, i.e. route stability based QoS routing (RSQR), route stability based ad-hoc on-demand distance vector (RSAODV) and Ad-hoc on-demand distance vector (AODV). Experimental outcomes show that SBADR significantly enhanced network performance in terms of throughput, packet delivery ratio (PDR) and normalized control overhead (NCO). Performance shows that SBADR is suitable for any application of MANET having random and high mobility.

Research limitations/implications

QoS in MANET is a challenging task. To achieve high-quality communication, the authors worked on multiple network parameters, i.e. path stability, available link bandwidth and energy of mobile nodes. The performance of the proposed routing protocol named SBADR is evaluated by a network simulator and compared with that of other routing protocols. Statistical analysis done on results proves significant enhancement in network performance. SBADR is suitable for applications of MANET having random and high mobility. It is also efficient for applications having a requirement of high throughput.

Practical implications

SBADR shows a significant enhancement in received data bytes, which are 1,709, 788 and 326 more in comparison of AODV, RSAODV and RSQR, respectively. PDR increased by 21.27%, 12.1%, 4.15%, and NCO decreased by 9.67%, 5.93%, 2.8% in comparison of AODV, RSAODV and RSQR, respectively.

Social implications

Outcomes show SBADR will perform better with applications of MANET such as disaster recovery, city tours, university or hospital networks, etc. SBADR is suitable for every application of MANET having random and high mobility.

Originality/value

This is to certify that the reported work in the paper entitled “SBADR: stable and bandwidth aware dynamic routing protocol for mobile ad hoc network” is an original one and has not been submitted for publication elsewhere. The authors further certify that proper citations to the previously reported work have been given and no data/tables/figures have been quoted verbatim from the other publications without giving due acknowledgment and without permission of the author(s).

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

11 – 20 of over 6000