Search results

1 – 10 of 111
Article
Publication date: 23 May 2018

Wei Zhang, Xianghong Hua, Kegen Yu, Weining Qiu, Shoujian Zhang and Xiaoxing He

This paper aims to introduce the weighted squared Euclidean distance between points in signal space, to improve the performance of the Wi-Fi indoor positioning. Nowadays, the…

Abstract

Purpose

This paper aims to introduce the weighted squared Euclidean distance between points in signal space, to improve the performance of the Wi-Fi indoor positioning. Nowadays, the received signal strength-based Wi-Fi indoor positioning, a low-cost indoor positioning approach, has attracted a significant attention from both academia and industry.

Design/methodology/approach

The local principal gradient direction is introduced and used to define the weighting function and an average algorithm based on k-means algorithm is used to estimate the local principal gradient direction of each access point. Then, correlation distance is used in the new method to find the k nearest calibration points. The weighted squared Euclidean distance between the nearest calibration point and target point is calculated and used to estimate the position of target point.

Findings

Experiments are conducted and the results indicate that the proposed Wi-Fi indoor positioning approach considerably outperforms the weighted k nearest neighbor method. The new method also outperforms support vector regression and extreme learning machine algorithms in the absence of sufficient fingerprints.

Research limitations/implications

Weighted k nearest neighbor approach, support vector regression algorithm and extreme learning machine algorithm are the three classic strategies for location determination using Wi-Fi fingerprinting. However, weighted k nearest neighbor suffers from dramatic performance degradation in the presence of multipath signal attenuation and environmental changes. More fingerprints are required for support vector regression algorithm to ensure the desirable performance; and labeling Wi-Fi fingerprints is labor-intensive. The performance of extreme learning machine algorithm may not be stable.

Practical implications

The new weighted squared Euclidean distance-based Wi-Fi indoor positioning strategy can improve the performance of Wi-Fi indoor positioning system.

Social implications

The received signal strength-based effective Wi-Fi indoor positioning system can substitute for global positioning system that does not work indoors. This effective and low-cost positioning approach would be promising for many indoor-based location services.

Originality/value

A novel Wi-Fi indoor positioning strategy based on the weighted squared Euclidean distance is proposed in this paper to improve the performance of the Wi-Fi indoor positioning, and the local principal gradient direction is introduced and used to define the weighting function.

Article
Publication date: 26 May 2020

Anupama Sharma, Abhay Bansal and Vinay Rishiwal

Quality communication is a big challenge in mobile ad hoc networks because of a restricted environment for mobile devices, bandwidth-constrained radio connections, random mobility…

Abstract

Purpose

Quality communication is a big challenge in mobile ad hoc networks because of a restricted environment for mobile devices, bandwidth-constrained radio connections, random mobility of connected devices, etc. High-quality communication through wireless links mainly depends on available bandwidth, link stability, energy of nodes, etc. Many researchers proposed stability and link quality methods to improve these issues, but they still require optimization. This study aims to contribute towards better quality communication in temporarily formed networks. The authors propose the stable and bandwidth aware dynamic routing (SBADR) protocol with the aim to provide an efficient, stable path with sufficient bandwidth and enough energy hold nodes for all types of quality of service (QoS) data communication.

Design/methodology/approach

The proposal made in this work used received signal strength from the media access control (MAC) layer to estimate the stability of the radio connection. The proposed path stability model combines the stability of the individual link to compute path stability. The amount of bandwidth available for communication at a specific time on a link is defined as the available link bandwidth that is understood as the maximum throughput of that link. Bandwidth as a QoS parameter ensures high-quality communication for every application in such a network. One other improvement, towards quality data transmission, is made by incorporating residual energies of communicating and receiving nodes in the calculation of available link bandwidth.

Findings

Communication quality in mobile ad hoc network (MANET) does not depend on a single parameter such as bandwidth, energy, path stability, etc. To address and enhance quality communication, this paper focused on high impact factors, such as path stability, available link bandwidth and energy of nodes. The performance of SBADR is evaluated on the network simulator and compared with that of other routing protocols, i.e. route stability based QoS routing (RSQR), route stability based ad-hoc on-demand distance vector (RSAODV) and Ad-hoc on-demand distance vector (AODV). Experimental outcomes show that SBADR significantly enhanced network performance in terms of throughput, packet delivery ratio (PDR) and normalized control overhead (NCO). Performance shows that SBADR is suitable for any application of MANET having random and high mobility.

Research limitations/implications

QoS in MANET is a challenging task. To achieve high-quality communication, the authors worked on multiple network parameters, i.e. path stability, available link bandwidth and energy of mobile nodes. The performance of the proposed routing protocol named SBADR is evaluated by a network simulator and compared with that of other routing protocols. Statistical analysis done on results proves significant enhancement in network performance. SBADR is suitable for applications of MANET having random and high mobility. It is also efficient for applications having a requirement of high throughput.

Practical implications

SBADR shows a significant enhancement in received data bytes, which are 1,709, 788 and 326 more in comparison of AODV, RSAODV and RSQR, respectively. PDR increased by 21.27%, 12.1%, 4.15%, and NCO decreased by 9.67%, 5.93%, 2.8% in comparison of AODV, RSAODV and RSQR, respectively.

Social implications

Outcomes show SBADR will perform better with applications of MANET such as disaster recovery, city tours, university or hospital networks, etc. SBADR is suitable for every application of MANET having random and high mobility.

Originality/value

This is to certify that the reported work in the paper entitled “SBADR: stable and bandwidth aware dynamic routing protocol for mobile ad hoc network” is an original one and has not been submitted for publication elsewhere. The authors further certify that proper citations to the previously reported work have been given and no data/tables/figures have been quoted verbatim from the other publications without giving due acknowledgment and without permission of the author(s).

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 22 June 2012

Kerri Stone and Tracy Camp

Localization is a fundamental problem in wireless sensor networks. In many applications, sensor location information is critical for data processing and meaning. While the global…

Abstract

Purpose

Localization is a fundamental problem in wireless sensor networks. In many applications, sensor location information is critical for data processing and meaning. While the global positioning system (GPS) can be used to determine mote locations with meter precision, the high hardware cost and energy requirements of GPS receivers often prohibit the ubiquitous use of GPS for location estimates. This high cost (in terms of hardware price and energy consumption) of GPS has motivated researchers to develop localization protocols that determine mote locations based on cheap hardware and localization algorithms. The purpose of this paper is to present a comprehensive review of wireless sensor network localization techniques, and provide a detailed overview for several distance‐based localization algorithms.

Design/methodology/approach

To provide a detailed summary of wireless sensor network localization algorithms, the authors outline a tiered classification system in which they first classify algorithms as distributed, distributed‐centralized, or centralized. From this broad classification, the paper then further categorizes localization algorithms using their protocol techniques. By utilizing this classification system, the authors are able to provide a survey of several wireless sensor network localization algorithms and summarize relative algorithm performance based on the algorithms' classification.

Findings

There are numerous localization algorithms available and the performance of these algorithms is dependent on network configuration, environmental variables, and the ranging method implemented. When selecting a localization algorithm, it is important to understand basic algorithm operation and expected performance. This tier‐based algorithm classification system can be used to gain a high‐level understanding of algorithm performance and energy consumption based on known algorithm characteristics.

Originality/value

Localization is a widely researched field and given the quantity of localization algorithms that currently exist, it is impossible to present a complete review of every published algorithm. Instead, the paper presents a holistic view of the current state of localization research and a detailed review of ten representative distance‐based algorithms that have diverse characteristics and methods. This review presents a new classification structure that may help researchers understand, at a high‐level, the expected performance and energy consumption of algorithms not explicitly addressed by our work.

Details

International Journal of Pervasive Computing and Communications, vol. 8 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 June 2008

Ranganathan Vidhyapriya and Ponnusamy Thangapandian Vanathi

The purpose of this paper is to explore grid‐based routing in wireless sensor networks and to compare the energy available in the network over time for different grid sizes.

Abstract

Purpose

The purpose of this paper is to explore grid‐based routing in wireless sensor networks and to compare the energy available in the network over time for different grid sizes.

Design/methodology/approach

The test area is divided into square‐shaped grids of certain length. Energized nodes are placed randomly in the terrain area with the sink node in a fixed position. One node per grid is elected as the leader node based on the highest energy level and the proximity to the centre of the grid. The sink node floods the network to identify a path from sink to source. The path from the sink to the source through the leader nodes are computed using three different methods: shortest path; leader nodes which have the highest energy; and leader nodes based on their received signal strength (RSS) indicator values. After the path is computed, transmission of data is continued until the leader nodes run out of energy. New leader nodes are then elected using the same mechanism to replace the depleted ones.

Findings

Identified the optimal grid size to minimize the energy consumption in sensor networks and to extend the network lifetime. Also proposed is a new routing protocol which identifies routes based on energy threshold and RSS threshold.

Research limitations/implications

The use of RSS threshold is identified to be the good metric for path selection in routing the data between source and the sink.

Practical implications

Simulator software and the protocol developed can be used for in optimizing energy efficiency in sensor networks.

Originality/value

This work contributes to the discussion on uniform and non‐uniform grid sizes and emphasizes a new method for reducing the energy consumption by identifying an optimum grid size. It also utilizes bursty data for simulation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 16 January 2017

Wei Zhang, Xianghong Hua, Kegen Yu, Weining Qiu, Xin Chang, Bang Wu and Xijiang Chen

Nowadays, WiFi indoor positioning based on received signal strength (RSS) becomes a research hotspot due to its low cost and ease of deployment characteristics. To further improve…

Abstract

Purpose

Nowadays, WiFi indoor positioning based on received signal strength (RSS) becomes a research hotspot due to its low cost and ease of deployment characteristics. To further improve the performance of WiFi indoor positioning based on RSS, this paper aims to propose a novel position estimation strategy which is called radius-based domain clustering (RDC). This domain clustering technology aims to avoid the issue of access point (AP) selection.

Design/methodology/approach

The proposed positioning approach uses each individual AP of all available APs to estimate the position of target point. Then, according to circular error probable, the authors search the decision domain which has the 50 per cent of the intermediate position estimates and minimize the radius of a circle via a RDC algorithm. The final estimate of the position of target point is obtained by averaging intermediate position estimates in the decision domain.

Findings

Experiments are conducted, and comparison between the different position estimation strategies demonstrates that the new method has a better location estimation accuracy and reliability.

Research limitations/implications

Weighted k nearest neighbor approach and Naive Bayes Classifier method are two classic position estimation strategies for location determination using WiFi fingerprinting. Both of the two strategies are affected by AP selection strategies and inappropriate selection of APs may degrade positioning performance considerably.

Practical implications

The RDC positioning approach can improve the performance of WiFi indoor positioning, and the issue of AP selection and related drawbacks is avoided.

Social implications

The RSS-based effective WiFi indoor positioning system can makes up for the indoor positioning weaknesses of global navigation satellite system. Many indoor location-based services can be encouraged with the effective and low-cost positioning technology.

Originality/value

A novel position estimation strategy is introduced to avoid the AP selection problem in RSS-based WiFi indoor positioning technology, and the domain clustering technology is proposed to obtain a better accuracy and reliability.

Article
Publication date: 7 April 2015

Adnan Mahmood, Hushairi Zen and Al-Khalid Othman

The paper aims to propose an optimized handover necessity estimation scheme for a mobile terminal (MT) traversing from a third-generation (3G) cellular network into the wireless…

Abstract

Purpose

The paper aims to propose an optimized handover necessity estimation scheme for a mobile terminal (MT) traversing from a third-generation (3G) cellular network into the wireless local area network (WLAN) cell for reducing the number of handover failures and unnecessary handovers.

Design/methodology/approach

The proposed optimized handover necessity estimation scheme comprises of two algorithms – a “travelling time prediction” reliant on consecutive received signal strength (RSS) measurements and MT’s velocity, and a “time threshold estimation” depending on the handover latency, WLAN’s cell radius, tolerable handover failure probability and the tolerable unnecessary handover probability.

Findings

Our performance analysis reveals that the suggested mechanism effectively minimizes the number of handover failures and unnecessary handovers by 60 per cent as compared to the already proposed schemes in the literature.

Originality/value

The convergence of Internet and wireless mobile communication accompanied by a massive increase in the number of cellular subscribers has led mobility management to emerge as a significant and challenging domain for wireless mobile communication over the Internet. Mobility management enables serving networks to locate roaming terminals for the call delivery (location management) and ensures a seamless connection as MT enters into the new service area (handover management). In this manuscript, an optimized handover necessity estimation scheme has been envisaged for reducing the probability of handover failures and unnecessary handovers from 3G cellular networks to WLANs to provide optimal network utilization along with an enhanced user satisfaction. Performance analysis reveals that the suggested scheme yields enhanced results as compared to the schemes already proposed in the literature.

Details

International Journal of Pervasive Computing and Communications, vol. 11 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 30 August 2022

Devika E. and Saravanan A.

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems…

51

Abstract

Purpose

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.

Design/methodology/approach

The proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.

Findings

The performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.

Originality/value

The proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 5 September 2008

Yung‐Chien Shih, Yuan‐Ying Hsu, Chien‐Hung Chen, Chien‐Chao Tseng and Edwin Sha

The accuracy of sensor location estimation influences directly the quality and reliability of services provided by a wireless sensor network (WSN). However, current localization…

Abstract

Purpose

The accuracy of sensor location estimation influences directly the quality and reliability of services provided by a wireless sensor network (WSN). However, current localization methods may require additional hardware, like global positioning system (GPS), or suffer from inaccuracy like detecting radio signals. It is not proper to add extra hardware in tiny sensors, so the aim is to improve the accuracy of localization algorithms.

Design/methodology/approach

The original signal propagation‐based localization algorithm adopts a static attenuation factor model and cannot adjust its modeling parameters in accordance with the local environment. In this paper an adaptive localization algorithm for WSNs that can dynamically adjust ranging function to calculate the distance between two sensors is presented. By adjusting the ranging function dynamically, the location of a sensor node can be estimated more accurately.

Findings

The NCTUNs simulator is used to verify the accuracy and analyze the performance of the algorithm. Simulation results show that the algorithm can indeed achieve more accurate localization using just a small number of reference nodes in a WSN.

Research limitations/implications

There is a need to have accurate location information of reference nodes.

Practical implications

This is an effective low‐cost solution for the localization of sensor nodes.

Originality/value

An adaptive localization algorithm that can dynamically adjust ranging function to calculate the distance between two sensors for sensor network deployment and providing location services is described.

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 16 October 2018

Dilong Chen, Qiang Lu, Dongliang Peng, Ke Yin, Chaoliang Zhong and Ting Shi

The purpose of this paper is to propose a receding horizon control approach for the problem of locating unknown wireless sensor networks by using a mobile robot.

Abstract

Purpose

The purpose of this paper is to propose a receding horizon control approach for the problem of locating unknown wireless sensor networks by using a mobile robot.

Design/methodology/approach

A control framework is used and consists of two levels: one is a decision level, while the other is a control level. In the decision level, a spatiotemporal probability occupancy grid method is used to give the possible positions of all nodes in sensor networks, where the posterior probability distributions of sensor nodes are estimated by capturing the transient signals. In the control level, a virtual robot is designed to move along the edge of obstacles such that the problem of obstacle avoidance can be transformed into a coordination problem of multiple robots. On the basis of the possible positions of sensor nodes and virtual robots, a receding horizon control approach is proposed to control mobile robots to locate sensor nodes, where a temporary target position method is utilized to avoid several special obstacles.

Findings

When the number of obstacles increases, the average localization errors between the actual locations and the estimated locations significantly increase.

Originality/value

The proposed control approach can guide the mobile robot to avoid obstacles and deal with the corresponding dynamical events so as to locate all sensor nodes for an unknown wireless network.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 March 2008

Yingying Chen, Gayathri Chandrasekaran, Eiman Elnahrawy, John‐Austen Francisco, Konstantinos Kleisouris, Xiaoyan Li, Richard P. Martin, Robert S. Moore and Begumhan Turgut

The purpose of this paper is to describe a general purpose localization system, GRAIL. GRAIL provides real‐time, adaptable, indoor localization for wireless devices.

Abstract

Purpose

The purpose of this paper is to describe a general purpose localization system, GRAIL. GRAIL provides real‐time, adaptable, indoor localization for wireless devices.

Design/methodology/approach

In order to localize as diverse a set of devices as possible, GRAIL utilizes a centralized, anchor‐based approach. GRAIL defines an abstract data model for various system components to support different physical modalities. The scalable architecture of GRAIL provides maximum flexibility to integrate various localization algorithms.

Findings

The authors show through real deployments that GRAIL functions over a variety of physical modalities, networks, and algorithms. Further, the authors found that a centralized solution has critical advantages over distributed implementations for handling privacy concerns.

Originality/value

A key contribution of this system is its universal approach: it can integrate different hardware and software capabilities within a single localization framework. The deployment of such a system in academic and research environments allows researchers to explore issues beyond algorithms and investigate effects in real deployments.

Details

Sensor Review, vol. 28 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 111