Search results

1 – 9 of 9
Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1951

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 13 September 2022

Mariusz Szóstak, Tomasz Nowobilski, Abdul-Majeed Mahamadu and David Caparrós Pérez

Unmanned aerial vehicles (UAV), colloquially called drones, are widely applied in many sectors of the economy, including the construction industry. They are used for building…

1733

Abstract

Purpose

Unmanned aerial vehicles (UAV), colloquially called drones, are widely applied in many sectors of the economy, including the construction industry. They are used for building inspections, damage assessment, land measurements, safety inspections, monitoring the progress of works, and others.

Design/methodology/approach

The study notes that UAV pose new, and not yet present, risks in the construction industry. New threats arise, among others, from the development of new technologies, as well as from the continuous automation and robotization of the construction industry. Education regarding the safe use of UAV and the proper use of drones has a chance to improve the safety of work when using these devices.

Findings

The procedure (protocol) was developed for the correct and safe preparation and planning of an unmanned aerial vehicle flight during construction operations.

Originality/value

Based on the analysis of available sources, no such complete procedure has yet been developed for the correct, i.e. compliant with applicable legal regulations and occupational health and safety issues, preparation for flying UAV. The verification and validation of the developed flight protocol was performed on a sample of over 100 different flight operations.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 10 August 2018

Yishou Wang, Zhibin Han, Tian Gao and Xinlin Qing

The purpose of this study is to develop a cylindrical capacitive sensor that has the advantages of high resolution, small size and designability and can be easily installed on…

1881

Abstract

Purpose

The purpose of this study is to develop a cylindrical capacitive sensor that has the advantages of high resolution, small size and designability and can be easily installed on lubricant pipeline to monitor lubricant oil debris.

Design/methodology/approach

A theoretical model of the cylindrical capacitive sensor is presented to analyze several parameters’ effectiveness on the performance of sensor. Numerical simulations are then conducted to determine the optimal parameters for preliminary experiments. Experiments are finally carried out to demonstrate the detectability of developed capacitive sensors.

Findings

It is clear from experimental results that the developed capacitive sensor can monitor the debris in lubricant oil well, and the capacitance values increase almost linearly when the number and size of debris increase.

Research limitations/implications

There is lot of further work to do to apply the presented method into the application. Especially, it is necessary to consider several factors’ influence on monitoring results. These factors include the flow rate of the lubricant oil, the temperature, the debris distribution and the vibration. Moreover, future work should consider the influence of the oil degradation to the capacitance change and other contaminations (e.g. water and dust).

Practical implications

This work conducts a feasibility study on application of capacitive sensing principle for detecting debris in aero engine lubricant oil.

Originality/value

The novelty of the presented capacitance sensor can be summarized into two aspects. One is that the sensor structure is simple and characterized by two coaxial cylinders as electrodes, while conventional capacitive sensors are composed of two parallel plates as electrodes. The other is that sensing mechanism and physical model of the presented sensor is verified and validated by the simulation and experiment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Open Access
Article
Publication date: 28 December 2020

Qinjie Yang, Guozhe Shen, Chao Liu, Zheng Wang, Kai Zheng and Rencheng Zheng

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However…

1270

Abstract

Purpose

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However, the sensors in the SBW system are particularly vulnerable to external influences, which can cause systemic faults, leading to poor steering performance and even system instability. Therefore, this paper aims to adopt a fault-tolerant control method to solve the safety problem of the SBW system caused by sensors failure.

Design/methodology/approach

This paper proposes an active fault-tolerant control framework to deal with sensors failure in the SBW system by hierarchically introducing fault observer, fault estimator, fault reconstructor. Firstly, the fault observer is used to obtain the observation output of the SBW system and then obtain the residual between the observation output and the SBW system output. And then judge whether the SBW system fails according to the residual. Secondly, dependent on the residual obtained by the fault observer, a fault estimator is designed using bounded real lemma and regional pole configuration to estimate the amplitude and time-varying characteristics of the faulty sensor. Eventually, a fault reconstructor is designed based on the estimation value of sensors fault obtained by the fault estimator and SBW system output to tolerate the faulty sensor.

Findings

The numerical analysis shows that the fault observer can be rapidly activated to detect the fault while the sensors fault occurs. Moreover, the estimation accuracy of the fault estimator can reach to 98%, and the fault reconstructor can make the faulty SBW system to retain the steering characteristics, comparing to those of the fault-free SBW system. In addition, it was verified for the feasibility and effectiveness of the proposed control framework.

Research limitations/implications

As the SBW fault diagnosis and fault-tolerant control in this paper only carry out numerical simulation research on sensors faults in matrix and laboratory/Simulink, the subsequent hardware in the loop test is needed for further verification.

Originality/value

Aiming at the SBW system with parameter perturbation and sensors failure, this paper proposes an active fault-tolerant control framework, which integrates fault observer, fault estimator and fault reconstructor so that the steering performance of SBW system with sensors faults is basically consistent with that of the fault-free SBW system.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 15 October 2015

Doug Paxton and Suzanne Van Stralen

“We live at a hinge time in history, a threshold time when societies and cultures are being recomposed. We are learning that the way life used to work—or the way we thought it…

Abstract

“We live at a hinge time in history, a threshold time when societies and cultures are being recomposed. We are learning that the way life used to work—or the way we thought it should— doesn’t work any longer” (Parks, 2009, p. xv). This article is about learning, culture change, practice and leadership. Many wise minds have articulated the leadership mindset we need for the future, and what remains stubbornly elusive is how we get there. We believe the difficult challenge of developing a new mindset--a new view of the world--to address the complexity and dynamic nature of the 21st century is of central importance to leadership education today. As Einstein famously conveyed, we cannot address the problems of today with the same mindset that created those problems. Our inquiry explores the following questions: “How do we develop the skills, capacities and consciousness necessary for bringing creativity, innovation and a new mindset to our most strategic and pressing organizational challenges? How do we practice our way into a new paradigm of leadership?” We invite you to join us in this inquiry into leadership

Details

Journal of Leadership Education, vol. 14 no. 4
Type: Research Article
ISSN: 1552-9045

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

2105

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 16 August 2023

Florian Ausserer, Igor Velkavrh, Fevzi Kafexhiu and Carsten Gachot

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Abstract

Purpose

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Design/methodology/approach

A pressure chamber allowing oscillating movement through an outer shaft was constructed and mounted on an oscillating tribometer. Due to a metal spring bellows system, a methodology for the evaluation of the coefficient of friction values separately from the spring forces was developed.

Findings

The selected material concept was qualitatively and quantitatively assessed. An evaluation of the static and the dynamic coefficient of friction was performed, which was crucial for the understanding of the adhesion effects of the tested material pairing. The amount of information that is lost due to averaging the measured friction values is higher than one would expect.

Originality/value

The developed experimental setup is unique and, compared with the existing tribometers for testing under gas ambient pressures, allows testing under contact conditions that are closer to real applications, such as compressors and expanders. An in-depth observation of the adhesion and stick–slip effects of the tested material pairings is possible as well.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0173/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

2208

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Access

Only Open Access

Year

Content type

Article (9)
1 – 9 of 9