Search results

1 – 10 of 17
Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 April 2024

Hu Luo, Haobin Ruan and Dawei Tu

The purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images…

Abstract

Purpose

The purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images problems such as detail loss, low contrast and color distortion, and verify the feasibility of the proposed methods through experiments.

Design/methodology/approach

The improved RGHS algorithm to enhance the original underwater target image is proposed, and then the YOLOv4 deep learning network for underwater small sample targets detection is improved based on the combination of traditional data expansion method and Mosaic algorithm, expanding the feature extraction capability with SPP (Spatial Pyramid Pooling) module after each feature extraction layer to extract richer feature information.

Findings

The experimental results, using the official dataset, reveal a 3.5% increase in average detection accuracy for three types of underwater biological targets compared to the traditional YOLOv4 algorithm. In underwater robot application testing, the proposed method achieves an impressive 94.73% average detection accuracy for the three types of underwater biological targets.

Originality/value

Underwater target detection is an important task for underwater robot application. However, most underwater targets have the characteristics of small samples, and the detection of small sample targets is a comprehensive problem because it is affected by the quality of underwater images. This paper provides a whole set of methods to solve the problems, which is of great significance to the application of underwater robot.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 December 2023

Ran Wang, Yunbao Xu and Qinwen Yang

This paper intends to construct a new adaptive grey seasonal model (AGSM) to promote the application of the grey forecasting model in quarterly GDP.

Abstract

Purpose

This paper intends to construct a new adaptive grey seasonal model (AGSM) to promote the application of the grey forecasting model in quarterly GDP.

Design/methodology/approach

Firstly, this paper constructs a new accumulation operation that embodies the new information priority by using a hyperparameter. Then, a new AGSM is constructed by using a new grey action quantity, nonlinear Bernoulli operator, discretization operation, moving average trend elimination method and the proposed new accumulation operation. Subsequently, the marine predators algorithm is used to quickly obtain the hyperparameters used to build the AGSM. Finally, comparative analysis experiments and ablation experiments based on China's quarterly GDP confirm the validity of the proposed model.

Findings

AGSM can be degraded to some classical grey prediction models by replacing its own structural parameters. The proposed accumulation operation satisfies the new information priority rule. In the comparative analysis experiments, AGSM shows better prediction performance than other competitive algorithms, and the proposed accumulation operation is also better than the existing accumulation operations. Ablation experiments show that each component in the AGSM is effective in enhancing the predictive performance of the model.

Originality/value

A new AGSM with new information priority accumulation operation is proposed.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Content available
Book part
Publication date: 8 April 2024

Abstract

Details

Modeling Economic Growth in Contemporary Czechia
Type: Book
ISBN: 978-1-83753-841-6

Article
Publication date: 25 April 2024

Adinda Hanan and Yeni Budi Rachman

Rare book collections are special, not only in terms of their physical appearance but also because of their historical significance and the information they contain. The purpose…

Abstract

Purpose

Rare book collections are special, not only in terms of their physical appearance but also because of their historical significance and the information they contain. The purpose of this study is twofold: to identify the physical condition of rare book collections and to determine the main causes of damage to rare books collection that belongs to a museum library in Indonesia.

Design/methodology/approach

This research involved conducting a survey of the physical condition of the collection of rare books owned by a museum library in Indonesia. Supporting data was also obtained through interviews with one of the staff who served as the museum collection conservator. This study used random sampling to take samples from the collection, which consisted of 950 rare books, with total sample of 91.

Findings

The results obtained state that the condition of the existing rare book collection is classified as severely damaged. One of the causes of damage that can be addressed immediately is the cleaning regime: the collection and library space should be cleaned thoroughly and regularly so that dust and dirt in and around the rare book collection can be reduced.

Research limitations/implications

This research was limited to physical identification, which can be done easily because it does not require various kinds of laboratory tests. It was a case study examining a single collection in a single museum library. The pool of books from which the samples were taken was therefore relatively homogenous. Therefore, it is hoped that further research can identify other factors and types of damage in more detail so that all damage to rare book collections can be identified and mitigated.

Originality/value

Research discussing the condition of rare book collections, especially for special libraries in museums in Indonesia, is still very limited. Detailed surveys of the physical condition of collections, especially rare book collections in museums, have rarely been discussed by previous research. The work will contribute to assessing the physical condition of rare book collections.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 November 2022

Hamfrey Sanhokwe

Exposure to a public health threat of significant proportions made current models inadequate to explain the failure phenomenon in small businesses. Hence, the need to reimagine…

Abstract

Purpose

Exposure to a public health threat of significant proportions made current models inadequate to explain the failure phenomenon in small businesses. Hence, the need to reimagine the phenomenon. Borrowing from the principles of biology, this study extended theoretical and empirical perspectives on the failure phenomenon by unpacking its constituent elements and the measurement metrics using the regeneration lens.

Design/methodology/approach

Based on a cohort tracked over time, the study estimated the survival probabilities of small and medium-scale enterprises (SMEs) with and without regeneration using the Kaplan–Meier method. The study investigated the factors that predict enterprise regenerative capacity using the multivariate Cox proportional hazard ratios.

Findings

Rates of interruption in business activity, by month, ranged between 0% and 18% during the follow-up period. True mortality rates hovered between 0% and 4% over the same period. Over three in five SMEs that experienced interruption in business activity without ceasing operations regenerated at some point in time during the follow-up period. The survival probabilities beyond the follow-up period were 0.85 and 0.44 with and without regeneration effects, respectively. Fresh capital injection (+), the introduction of new/improved processes or products/services (+), perceived business outlook (+) and the presence of debt (−) influenced the capacity to regenerate.

Research limitations/implications

The cohort was followed for only six months. There is a need to continue interrogating the failure phenomenon in other contexts over longer periods using the regeneration lens. Bringing on board academia, financial institutions and other SME-related ecosystem players will be strategic.

Practical implications

The approach provides a more nuanced understanding of the life and well-being of enterprises under conditions of disruption. Improving the precision and validity of failure-related statistics enhances their utility in policy and remediation-related discussions.

Social implications

The results did not show significant differences in SME mortality rates between male and female-owned enterprises. The results provide further evidence that the failure phenomenon is ungendered. As such, financial institutions and the SME ecosystem at large must eliminate perceptual gender biases in the financing and other support to SMEs.

Originality/value

The study used the principles of biology to reimagine the failure phenomenon in small businesses. The approach breathes life into entrepreneurship research and policy.

Details

Journal of Entrepreneurship in Emerging Economies, vol. 16 no. 3
Type: Research Article
ISSN: 2053-4604

Keywords

Article
Publication date: 17 June 2021

Ambica Ghai, Pradeep Kumar and Samrat Gupta

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered…

1165

Abstract

Purpose

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework.

Design/methodology/approach

The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters.

Findings

The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection.

Research limitations/implications

This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques.

Practical implications

This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers.

Social implications

In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media.

Originality/value

This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of 17