Search results

1 – 10 of 27
Article
Publication date: 27 July 2018

Adekunle Sulaimon Ogunbadejo, Sunday Aribo, Oluwatoyin Adenike Olaseinde, Oladeji O. Ige and Peter Olubambi

This paper aims to investigate the stability of passive oxide film formed on the surface of 316L stainless steel in 3.5 Wt.% NaCl in the presence of two environmentally non-toxic…

Abstract

Purpose

This paper aims to investigate the stability of passive oxide film formed on the surface of 316L stainless steel in 3.5 Wt.% NaCl in the presence of two environmentally non-toxic inhibitors, i.e. leaf extracts of Musa spp. (MS) and Jatropha curcas (JC).

Design/methodology/approach

Current transients and potentiodynamic polarization curves were used to explain the stability of the passive film on Current transients and potentiodynamic polarization curves were used to explain the stability of the passive film on 316L stainless steel at both ambient temperature (25 °C) and 70 °C. For the potentiostatic tests, the coupons underwent cathodic stripping to remove the native oxide on their surfaces at −850 mV for 600 s, and a potential of 50 mV was imposed to observe the repassivation for 200 s. For the potentiodynamic tests, the pitting potential measured at 100 μA/cm2, corrosion potential and cathodic current density were obtained for analysis.

Findings

The current transients perfectly fitted into the exponential decay curve; i = is + ipeak exp(−t/τ), where the decay constant, τ measures the repassivating speed and extent to which the newly formed film heals and stabilizes. The current transients showed that MS and JC help in the repassivating process, especially at 300 ppm and 200 ppm, respectively, both at the lower temperature. The potentiodynamic curves mostly correlated with the current transients except for the hybrid inhibitor. The inhibitors increased the pitting potentials at concentrations that are correlated to their scanning electron micrograph images.

Research limitations/implications

Because they are cheap and environmentally friendly, plant extracts that are proven corrosion inhibitors could be used to aid the formation of passive film on passive alloys in not-so-aggressive environments.

Practical implications

Both MS and JC improve the film stability mostly at intermediate concentrations of 200 and 300 ppm, respectively, at ambient temperature and 70° C.

Social implications

Using leaf extracts of plants as green inhibitors is considered an environmentally friendly engineering solution.

Originality/value

The leaf extracts are a convenient resource of green inhibitors because their plants are readily available or could be easily naturalized, the processing technique to obtain the extracts is very cheap and the inhibitors are environmentally friendly. In addition, cathodic stripping exposes a relatively larger surface area than that obtained using the most common forms of depassivation; hence, the efficiency of the inhibitor in aiding the formation of the new oxide film to cover the bare surface would be better measured. There is very lean research data on the combined use of green inhibitors and cathodic stripping to study repassivating kinetics of passive alloys.

Details

Pigment & Resin Technology, vol. 47 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 October 2018

Ivan M. Zin, Vasyl I. Pokhmurskii, Sergiy A. Korniy, Olena V. Karpenko, Stuart B. Lyon, Olha P. Khlopyk and Mariana B. Tymus

The purpose of this paper is to study the influence of rhamnolipid biosurfactant complex on the corrosion and the repassivation of a freshly cut Al-Cu-Mg aluminium alloy surface.

Abstract

Purpose

The purpose of this paper is to study the influence of rhamnolipid biosurfactant complex on the corrosion and the repassivation of a freshly cut Al-Cu-Mg aluminium alloy surface.

Design/methodology/approach

The electrochemical methods, supported by quantum-chemical calculations and scanning electron microscopy data, were used.

Findings

It was established that the rhamnolipid biosurfactant effectively inhibits corrosion of the alloy in synthetic acid rainwater. The efficiency of inhibition becomes stronger with the increase of biosurfactant concentration; however, above the critical micelle concentration, the further improvement in inhibition is minor. It is believed that the mechanism of corrosion inhibition is related to the adsorption of the biosurfactant molecule on the aluminium alloy surface and the formation of a barrier film; however, the formation of a complex compound (salt film) between aluminium ions and rhamnolipid on anodic sites of the alloy is not ruled out. In case of surface mechanical activation of the alloy, the biosurfactant molecule effectively prevents corrosion. Furthermore, addition of the biosurfactant to the corrosion environment increases the repassivation kinetics of the alloy by two to four times as compared with an uninhibited environment.

Practical implications

The commercial impact of the study consists in the possibility of obtaining of environmentally safe corrosion inhibitors of aluminium alloys by biosynthesis from renewable agricultural raw materials.

Originality/value

The originality of this paper is to study the effectiveness of “green” corrosion inhibitor based on biogenic product on freshly generated surface of aluminium alloy.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1972

J.C. Scully

Introduction Stress corrosion cracking is a phenomenon that is of interest to a wide range of metal users. When it occurs under service conditions, often without any prior…

Abstract

Introduction Stress corrosion cracking is a phenomenon that is of interest to a wide range of metal users. When it occurs under service conditions, often without any prior indication of impeding failure, its effect may be catastrophic.

Details

Anti-Corrosion Methods and Materials, vol. 19 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 26 December 2023

Raghad Ahmed Alaloosi, Onur Çomakli, Mustafa Yazici and Ziad A. Taha

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM…

Abstract

Purpose

This paper aims to investigate the influence of scan speed on the corrosion and tribocorrosion features of the CoCrMoW samples fabricated via the selective laser melting (SLM) process.

Design/methodology/approach

CoCrMoW samples were produced by SLM at different scan speeds. Produced samples were made via structural surveys (X-ray diffraction examinations and scanning electron microscopic analyses), hardness measurements and electrochemical and tribocorrosion experiments.

Findings

Outcomes displayed that the corrosion and tribocorrosion properties of CoCrMoW alloy were significantly influenced by scanning speeds. Also, these properties of the alloy increased with increasing scanning speeds. CoCrMoW samples produced at a laser scan speed of 1,000 mm/s showed the best resistance to corrosion and tribocorrosion. This could be related to the high hardness and low grain structure of the fabricated samples.

Originality/value

This paper may be a practical reference and offers insight into the effect of scanning speeds on the increase of hardness, tribological and corrosion performance of CoCrMoW alloys. This study can help in the further advancement of cobalt-chromium alloy in situ produced by SLM for both electrochemical and tribocorrosion behavior for biomedical applications.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 May 2024

Wei Liu

This study aims to investigate the individual electrochemical transients arising from local anodic events on stainless steel, to uncover the potential mechanisms producing…

Abstract

Purpose

This study aims to investigate the individual electrochemical transients arising from local anodic events on stainless steel, to uncover the potential mechanisms producing different types of transients and to derive appropriate parameters indicative of the corrosion severity of such transient events.

Design/methodology/approach

An equivalent circuit model was used for the transient analysis, which was performed using a local current allocation rule based on the relative instant cathodic resistance of the coupled electrodes, as well as the kinetic parameters derived from the electrochemical polarization measurement.

Findings

The shape and size of the electrochemical current transients arising from SS 316 L were influenced by the film stability, local anodic dissolution kinetics and the symmetry of the cathodic kinetics between the coupled electrodes, where the ultralong transient might correspond to the propagation of film damage with a slow anodic dissolution rate. The dynamic cathodic resistance during the final stage of transient current growth can serve as a characteristic parameter that reflects the loss of passive film protection.

Originality/value

Estimation of the local anodic current trace opens a new way for individual electrochemical transient analysis associated with the charges involved, local current densities and changes in film resistance throughout localized corrosion processes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 November 1988

Z.A. Foroulis Exxon Research and Engineering Company

Passivity and localized corrosion is discussed using iron, iron‐chromium, iron‐chromium‐nickel alloys and aluminium as examples. A brief description is given of the prevailing…

Abstract

Passivity and localized corrosion is discussed using iron, iron‐chromium, iron‐chromium‐nickel alloys and aluminium as examples. A brief description is given of the prevailing ideas regarding the nature of the passive film and the processes by which its protective properties are lost when breakdown of passivity and localized corrosion occurs.

Details

Anti-Corrosion Methods and Materials, vol. 35 no. 11
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 November 1986

Zaki Ahmad

The relatively complex corrosion mechanism of aluminium has been studied by several authors. Corrosion of aluminium occurs only when the metal protective oxide layer is damaged…

Abstract

The relatively complex corrosion mechanism of aluminium has been studied by several authors. Corrosion of aluminium occurs only when the metal protective oxide layer is damaged and when the repair mechanism is prevented by chemical dissolution. Polarization methods have been extensively used to investigate the mechanism of localised corrosion and processes that lead to localised corrosion. The potential‐pH diagrams are shown in Fig. 1A. In using potentiostatic techniques, the potential is controlled and current is determined as the independent variable. Potentiostatic and potentiody‐namic techniques have been applied by several authors to study the corrosion of aluminium in different environment. Both anodic and cathodic polarization curves have been used to interpret the kinetics of pitting corrosion of aluminium in chloride containing environments. Both the anodic and cathodic process are complex and the interpretation of the anodic and cathodic polarization curves of aluminium is often tedious. The situation arises partly from the fact that the role of film formation on the kinetics of corrosion is not clearly understood. Previously there is not established mechanisms of initiation and propagation of pits in aluminium and its alloys. Several parameters such as pitting potential, breakdown potential, active passive transition potential, related to the pitting process of aluminium, are full of controversy. Numerous references on the above can be found in literature).

Details

Anti-Corrosion Methods and Materials, vol. 33 no. 11
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 10 August 2018

Fuliang Ma, Zhixiang Zeng and Yimin Gao

This paper aims to study the tribocorrosion and the surface repassivation behaviors of Monel 400 alloy in artificial seawater.

Abstract

Purpose

This paper aims to study the tribocorrosion and the surface repassivation behaviors of Monel 400 alloy in artificial seawater.

Design/methodology/approach

In this study, the tribocorrosion behavior of Monel 400 alloy was studied under different applied loads in artificial seawater by using a pin-on-disk tribometer equipped with an electrochemical workstation. The applied loads were selected ranging from 50 to 200 N. The surface repassivation behavior of Monel 400 alloy was studied by X-ray photoelectron spectroscopy.

Findings

It was demonstrated that mass loss was determined by the combined effect of mechanical wear and chemical corrosion. The surface repassivation mechanism of the alloy is that layer corrosion product film formed on the surface of Monel 400 alloy, which can protect metal matrix from future corrosion.

Originality/value

This research adds original content in revealing the tribocorrosion and surface repassivation behaviors of Monel 400 alloy under different loads, which offer a theoretical basis for the application under the corrosion and wear environment of Monel 400.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2019

Altaf Ahmad, Ranveer Kumar and Anil Kumar

This paper aims to identify an inhibitor to protect rebar corrosion in concrete.

Abstract

Purpose

This paper aims to identify an inhibitor to protect rebar corrosion in concrete.

Design/methodology/approach

The authors use the simple method of polarization and calculate the change in open-circuit potential and corrosion current density.

Findings

Sodium molybdate is an efficient inhibitor compared with sodium tungstate for rebar corrosion in concrete.

Research limitations/implications

This paper has limitation of 0.0001 M concentration of inhibitors for 400 days of exposure in 3.5 per cent sodium chloride solution.

Originality/value

The research focused on the concentration of both inhibitors in the range from 0.1 to 0.0001 M, which resulted in greater structural protection from corrosion in adverse conditions, such as coastal areas.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 March 2022

Rabab M. Nasser and Nora M. Masmali

Plant development and use as green corrosion inhibitors are already recognized as one of the most environmentally friendly and effective protocols. In recent years, efforts have…

Abstract

Purpose

Plant development and use as green corrosion inhibitors are already recognized as one of the most environmentally friendly and effective protocols. In recent years, efforts have been made to find green corrosion inhibitors as an alternative to synthetic inhibitors for metals in acid medium. This paper aims to report the investigation of use of aqueous extracts of Tamarindus Indica as green inhibitors for corrosion of metals within different circumstances.

Design/methodology/approach

The use of Tamarindus Indica extracts (leaves, stem, fruit pulp and fruit husk) as corrosion inhibitors for mild steel and aluminum in different mediums (HCl, H2SO4, formic acid and citric acid) at different temperatures was investigated.

Findings

The inhibitory efficiency of Tamarindus Indica extracts increases with increasing concentration and decreases with increasing temperature. Langmuir is the adsorption isotherm, and the extract (inhibitor) is a mixed-type inhibitor (physisorption and chemisorption).

Practical implications

Tamarindus extracts (leaves, stem, fruit pulp and fruit husk) are effective inhibitors and can be used to protect metals from corrosion at different circumstances.

Originality/value

To the best of the authors’ knowledge, this is the first review that discusses the use of Tamarindus Indica extracts as corrosion inhibitors for metals.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 27