Search results

1 – 10 of over 2000
Article
Publication date: 2 November 2018

Jernej Drofelnik, Andrea Da Ronch, Matteo Franciolini and Andrea Crivellini

This paper aims to present a numerical method based on computational fluid dynamics that allows investigating the buffet envelope of reference equivalent wings at the equivalent

Abstract

Purpose

This paper aims to present a numerical method based on computational fluid dynamics that allows investigating the buffet envelope of reference equivalent wings at the equivalent cost of several two-dimensional, unsteady, turbulent flow analyses. The method bridges the gap between semi-empirical relations, generally dominant in the early phases of aircraft design, and three-dimensional turbulent flow analyses, characterised by high costs in analysis setups and prohibitive computing times.

Design/methodology/approach

Accuracy in the predictions and efficiency in the solution are two key aspects. Accuracy is maintained by solving a specialised form of the Reynolds-averaged Navier–Stokes equations valid for infinite-swept wing flows. Efficiency of the solution is reached by a novel implementation of the flow solver, as well as by combining solutions of different fidelity spatially.

Findings

Discovering the buffet envelope of a set of reference equivalent wings is accompanied with an estimate of the uncertainties in the numerical predictions. Just over 2,000 processor hours are needed if it is admissible to deal with an uncertainty of ±1.0° in the angle of attack at which buffet onset/offset occurs. Halving the uncertainty requires significantly more computing resources, close to a factor 200 compared with the larger uncertainty case.

Practical implications

To permit the use of the proposed method as a practical design tool in the conceptual/preliminary aircraft design phases, the method offers the designer with the ability to gauge the sensitivity of buffet on primary design variables, such as wing sweep angle and chord to thickness ratio.

Originality/value

The infinite-swept wing, unsteady Reynolds-averaged Navier–Stokes equations have been successfully applied, for the first time, to identify buffeting conditions. This demonstrates the adequateness of the proposed method in the conceptual/preliminary aircraft design phases.

Article
Publication date: 5 January 2015

Luca Riccobene and Sergio Ricci

The purpose of this paper is to present a formulation that couples equivalent plate and beam models for aircraft structures analysis, suitable in conceptual design in which fast…

Abstract

Purpose

The purpose of this paper is to present a formulation that couples equivalent plate and beam models for aircraft structures analysis, suitable in conceptual design in which fast model generation and efficient analysis capability are required.

Design/methodology/approach

Assembling the complete model with common techniques such as Lagrange multipliers or penalty function method would require a solver capable of handling the combined set of linear equation. The alternative approach proposed here is based on a static reduction of the beam model at specified connection points and the subsequent “embedding” into the equivalent plate model using a coordinate transformation, translating physical dfs in Ritz coordinates, i.e. polynomial coefficients. Displacements and forces on beam elements are recovered with the inverse transformation once the solution is computed.

Findings

An aeroelastic trim analysis on a Transonic CRuiser (TCR) civil aircraft conceptual model validates the hybrid model: as the TCR features a slender flexible fuselage and a wide root chord wing, the capability to reduce the beam model for the fuselage at more than one connection point improved aeroelastic corrections to steady longitudinal aerodynamic derivatives.

Originality/value

Although the equivalent model proposed is simpler than others found in literature, it offers automatic mesh generation capabilities, and it is fully integrated into an aeroelastic framework. The hybrid model represents an enhancement allowing both dynamical and static analyses.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 July 2017

Florian Schueltke and Eike Stumpf

Laminarization of commercial aircraft surfaces is the most promising technology to reduce fuel consumption and ecological impact. As laminar flow highly depends on cross-flow…

Abstract

Purpose

Laminarization of commercial aircraft surfaces is the most promising technology to reduce fuel consumption and ecological impact. As laminar flow highly depends on cross-flow effects, there is the question in which way simple estimations and simplifications for application in conceptual aircraft design can be used to capture these cross-flow influences. This paper aims to show the accuracy of 2D methods for estimating laminar flow regions on 3D wing objects.

Design/methodology/approach

Several methods, relating 3D and 2D flow conditions, are analyzed with regard to capture cross-flow influences. The 3D pressure distributions depending on utilized transformation method are compared to Reynolds-averaged Navier–Stokes (RANS) solutions. With the most precise transformation method, the laminar flow area on a conventional wing of a short range aircraft is determined and compared to the laminar area obtained with the RANS pressure distributions as input. Further, hybrid laminar flow control component sizing is carried out to obtain the net benefit in fuel reduction of simplified method compared to RANS method for a conventional short range aircraft.

Findings

In this particular case, the solutions calculated with the simplified methods show high deviations from those obtained with RANS.

Originality/value

This investigation underlines the need of proper methods for fast and accurate estimation of cross-flow effects to be able to assess the full potential of laminar flow control within conceptual aircraft design.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 1944

J.L. Beilschmidt

IN an earlier article dealing with the general aspects of clastic distortion phenomena, which appeared in an issue of Aeronautics, mention was made of the various factors which…

Abstract

IN an earlier article dealing with the general aspects of clastic distortion phenomena, which appeared in an issue of Aeronautics, mention was made of the various factors which tend either to promote, or to damp out and eliminate the onset of the aerodynamic inertia elastic vibration phenomena known as flutter, and it was pointed out that in this respect the provision of an adequate measure of rigidity, both as regards to twisting and flexure of the wing or tail surface structure is one of the most effective safeguards against the occurrence of torsional‐flexural flutter.

Details

Aircraft Engineering and Aerospace Technology, vol. 16 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1929

R.A. Frazer

VIOLENT oscillations of particular parts of an aeroplane structure have been observed and studied since early days. The theory of wing oscillations is, however, rather more modern…

Abstract

VIOLENT oscillations of particular parts of an aeroplane structure have been observed and studied since early days. The theory of wing oscillations is, however, rather more modern and was initiated, it is believed, by A. G. von Baumhauer and C. Koning, who presented a paper at the International Air Congress in 1923. Since that year the subject has been much developed both abroad and in this country. The literature has grown rapidly, and a detailed notice of the papers cannot here be attempted.

Details

Aircraft Engineering and Aerospace Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 16 November 2018

Vittorio Cipolla, Karim Abu Salem and Filippo Bachi

The present paper aims to assess the reliability and the limitations of analysing flight stability of a box-wing aircraft configuration known as PrandtlPlane by means of methods…

Abstract

Purpose

The present paper aims to assess the reliability and the limitations of analysing flight stability of a box-wing aircraft configuration known as PrandtlPlane by means of methods conceived for conventional aircraft and well known in the literature.

Design/methodology/approach

Results obtained by applying vortex lattice methods to PrandtlPlane configuration, validated previously with wind tunnel tests, are compared to the output of a “Roskam-like” method, here defined to model the PrandtlPlane features.

Findings

The comparisons have shown that the “Roskam-like” model gives accurate predictions for both the longitudinal stability margin and dihedral effect, whereas the directional stability is always overestimated.

Research limitations/implications

The method here proposed and related achievements are valid only for subsonic conditions. The poor reliability related to lateral-directional derivatives estimations may be improved implementing different models known from the literature.

Practical implications

The possibility of applying a faster method as the “Roskam-like” one here presented has two main implications: it allows to implement faster analyses in the conceptual and preliminary design of PrandtlPlane, providing also a tool for the definition of the design space in case of optimization approaches and it allows to implement a scaling procedure, to study families of PrandtlPlanes or different aircraft categories.

Social implications

This paper is part of the activities carried out during the PARSIFAL project, which aims to demonstrate that the introduction of PrandtlPlane as air transport mean can fuel consumption and noise impact, providing a sustainable answer to the growing air passenger demand envisaged for the next decades.

Originality/value

The originality of this paper lies in the attempt of adopting analysis method conceived for conventional airplanes for the analysis of a novel configuration. The value of the work is represented by the knowledge concerning experimental results and design methods on the PrandtlPlane configuration, here made available to define a new analysis tool.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 2014

Enrico Cestino and Giacomo Frulla

This study aims to analyse slender thin-walled anisotropic box-beams. Fiber-reinforced laminated composites could play an important role in the design of current and future…

Abstract

Purpose

This study aims to analyse slender thin-walled anisotropic box-beams. Fiber-reinforced laminated composites could play an important role in the design of current and future generations of innovative civil aircrafts and unconventional unmanned configurations. The tailoring characteristics of these composites not only improve the structural performance, and thus reduce the structural weight, but also allow possible material couplings to be made. Static and dynamic aeroelastic stability can be altered by these couplings. It is, therefore, necessary to use an accurate and computationally efficient beam model during the preliminary design phase.

Design/methodology/approach

A proper structural beam scheme, which is a modification of a previous first-level approximation scheme, has been adopted. The effect of local laminate stiffness has been investigated to check the possibility of extending the analytical approximation to different structural configurations. The equivalent stiffness has been evaluated for both the case of an isotropic configuration and for simple thin-walled laminated or stiffened sections by introducing classical thin-walled assumptions and the classical beam theory for an equivalent system. Coupling effects have also been included. The equivalent analytical and finite element beam behaviour has been determined and compared to validate the considered analytical stiffness relations that are useful in the preliminary design phase.

Findings

The work has analyzed different configurations and highlighted the effect of flexural/torsion couplings and a local stiffness effect on the global behaviour of the structure. Three types of configurations have been considered, namely, a composite wing box configuration, with and without coupling effects; a wing box configuration with sandwich and cellular constructions; and a wing box with stiffened panels in a coupled or an uncoupled configuration. An advanced aluminium experimental test sample has also been described in detail. Good agreement has been found between the theoretical and numerical analyses and the experimental tests, thus confirming the validity of the analytical relations.

Practical implications

The equivalent beam behaviour that has been determined and the stiffness calculation procedure that has been derived could be useful for future dynamic and aeroelastic analyses.

Originality/value

The article presents an original derivation of the sectional characteristics of a thin-walled composite beam and a numerical/experimental validation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 September 1959

J.H. Argyris and S. Kelsey

The analysis of the wing/fuselage and fuselage/tail unit interaction forces is extended to cover the case when the attached component is more conveniently analysed by the Matrix…

Abstract

The analysis of the wing/fuselage and fuselage/tail unit interaction forces is extended to cover the case when the attached component is more conveniently analysed by the Matrix Displacement Method. The flexibility matrix of the complete aircraft, supported on the wing/fuselage attachment points, follows from the results derived in this and previous sections and takes into account the elastic interaction between the various components. The dynamical matrix of the complete free aircraft is set up and for completeness the theory and properties of the normal modes of vibration are given. A final sub‐section discusses some points of detail in the mass distribution and the definition of the forces on the aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 July 2016

Jaime Garcia-Benitez, Cristina Cuerno-Rejado and Rafael Gomez-Blanco

This paper aims to compare three closed non-planar wing configurations with a reference conventional wing-plus-horizontal tail aircraft, considering structural aspects, weights…

Abstract

Purpose

This paper aims to compare three closed non-planar wing configurations with a reference conventional wing-plus-horizontal tail aircraft, considering structural aspects, weights and aerodynamic characteristics, as well as operational issues, such as cruise performance.

Design/methodology/approach

A vortex lattice code is used and coupled with an in-house code for structural beam calculation subroutine to evaluate the configurations as a function of the four main parameters identified in the study.

Findings

The study concludes that the non-planar wing configurations have better performances than a conventional aircraft. Moreover, the joined-wing configuration seems to be better than the others, including the box-wing configuration, achieving an increase of 17 per cent in the range for maximum payload compared to the reference aircraft and a 3 per cent reduction of maximum take-off weight.

Research limitations/implications

In the study, characteristic tools for a conceptual design are used, and, thus, absolute results should be considered with caution. Nonetheless, as all the cases are studied in the same way, there is a good precision in comparative or relative results.

Practical implications

The work shows that the non-planar wing configurations can be used as an alternative to the conventional aircraft to meet the objectives for the future of the aviation industry.

Social implications

Non-planar wing configurations are able to reduce fuel consumption. Their use could lead to reductions in pollutant emissions and the impact on the environment of commercial aviation.

Originality/value

This study considers aerodynamic and structural aspects at the same time, as well as several non-planar wing configurations, making possible to obtain a more realistic comparison between them.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 1966

Marvin M. Alexander

This paper presents a broad survey of the structural problems associated with variable geometry for aircraft. Variable sweep allows an aircraft to fly throughout a broad regime of…

Abstract

This paper presents a broad survey of the structural problems associated with variable geometry for aircraft. Variable sweep allows an aircraft to fly throughout a broad regime of speed and altitude efficiently and without excessive power requirements. Tailored lift drag, improved ride quality, lessening of fatigue damage, and reasonable control sensitivities are advantages. Structural problems fall into two general categories: (1) Because of the number of wing positions, the equivalent of many fixed‐wing aircraft must be investigated, analysed and tested; (2) there are unusual problems which have heretofore not been important considerations in design. Category (1) presents the problem of managing and assimilating large amounts of data. Computer pogrammes and a family of cross‐plots assist greatly. Category (2) presents new fail‐safe criteria, a large lumber of possible flutter‐critical configurations, unavoidable free play in mechanisms which affect flutter speeds, dynamic loads, pivot mechanism bearing life, and requires high reliability in materials. Analyses and wind‐tunnel tests have shown that free play in mechanical joints may or may not cause significant service problems depending upon the mechanical arrangement selected and the actual degree of free play under service conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 38 no. 5
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 2000