Search results

1 – 10 of 196
Open Access
Article
Publication date: 31 October 2023

Alberto Giubilini and Paolo Minetola

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of…

Abstract

Purpose

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of additive manufacturing (AM) to new products, such as automotive suspensions.

Design/methodology/approach

An experimental approach for sample fabrication on a multiextruder 3D printer and characterization by compression testing was conducted along with numerical simulations, which were used to support the design of different auxetic configurations for the jounce bumper.

Findings

The effect of stacking different auxetic cell modules was discussed, and the findings demonstrated that a one-piece printed structure has a better performance than one composed of multiple single modules stacked on top of each other.

Research limitations/implications

The quality of the 3D printing process affected the performance of the final components and reproducibility of the results. Therefore, researchers are encouraged to further study component fabrication optimization to achieve a more reliable process.

Practical implications

This research work can help improve the manufacturing and functionality of a critical element of automotive suspension systems, such as the jounce bumper, which can efficiently reduce noise, vibration and harshness by absorbing impact energy.

Originality/value

In previous research, auxetic structures for the application of jounce bumpers have already been suggested. However, to the best of the authors’ knowledge, in this work, an AM approach was used for the first time to fabricate multimaterial auxetic structures, not only by co-printing a flexible thermoplastic polymer with a stiffer one but also by continuously extruding multilevel structures of auxetic cell modules.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 November 2022

Liyao Song, Bai Chen, Bo Li, Rupeng Zhu and Dan Wang

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there…

Abstract

Purpose

The supercritical design of tail rotor drive shaft has attracted more attention in helicopter design due to its high power–weight ratio and low maintenance cost. However, there exists excessive vibration when the shaft passes through the critical frequency. Dry friction damper is the equipment applied to the drive shaft to suppress the excessive vibration. In order to figure out the damping mechanism of the dry friction damper and improve the damping efficiency, the dynamic model of the shaft/damper system is established based on the Jeffcott rotor model.

Design/methodology/approach

The typical frequency response of the system is studied through bifurcation diagrams, amplitude-frequency characteristic curves and waterfall frequency response spectrum. The typical transient responses under frequency sweeps are also obtained.

Findings

The results show that the response of the system changes from periodic no-rub motion to quasi-periodic rub-impact motion, and then to synchronous full annular rub-impact, and finally, back to periodic no-rub motion. The slip of the rub-impact ring improves the stability of the system. Besides, the effects of the system parameters including critical dry friction force, rub-impact friction coefficient, initial clearance on the stability and the vibration damping capacity are studied. It is observed that the stability changes significantly varying the three parameters respectively. The vibration damping capacity is mainly affected by the critical dry friction force and the initial clearance.

Originality/value

Presented results provide guidance for the design of the dry friction damper.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 24 August 2021

Diede Christine Wijnbergen, Merel van der Stelt and Luc Martijn Verhamme

Fused filament fabrication (FFF) using tough poly lactic acid (PLA) was determined to be the most suited method to achieve low-cost prosthetic sockets. However, improvement in the…

1625

Abstract

Purpose

Fused filament fabrication (FFF) using tough poly lactic acid (PLA) was determined to be the most suited method to achieve low-cost prosthetic sockets. However, improvement in the material properties is desirable to strengthen these sockets. This study aims to evaluate annealing as a potential method to improve material properties by a heat treatment of the object after 3D printing.

Design/methodology/approach

Four different annealing methods and a control group were tested according to ISO standard 527–1 and ISO standard 527–2. The four annealing methods included: oven; sand; water; and glycerol annealing. Tests were performed on longitudinal and transversal 3D printed samples. Deformation was determined on 3D printed test rings.

Findings

Annealing using an oven, sand and water resulted in a significant increase in tensile strength in longitudinally 3D printed tensile test samples. However, the tensile strength was decreased in the transversally 3D printed tensile test samples. The tensile modulus had no significant increase in the longitudinally and transversally printed samples. Sand annealing resulted in the least deformation, with a shrinkage of 2.04% of inner diameter and an increase in height of 1.99% for the horizontally annealed test rings.

Research limitations/implications

The annealing of prosthetic sockets is not recommended as a decrease in tensile strength in transversally printed tensile test samples was observed. More research is needed towards the strengthening of tough PLA in both print directions.

Originality/value

This paper fulfils the need for understanding the impact of annealing on 3D printed items intended for daily use, such as a prosthetic socket.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 May 2020

Li Cui

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating…

4478

Abstract

Purpose

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating life model of ball bearings, which is expected for calculating fatigue life of ball bearings more accurately under vibration load, especially in high speed and light load conditions.

Design/methodology/approach

A new fatigue damage accumulation rating life model of ball bearings considering time-varying vibration load is proposed. Vibration equations of rotor-bearing system are constructed and solved by Runge–Kutta method. The modified rating life and modified reference rating life model under vibration load is also proposed. Contrast of the three fatigue life models and the influence of dynamic balance level, rotating speed, preload of ball bearings on bearing’s fatigue life are analyzed.

Findings

To calculate fatigue rating life of ball bearings more accurately under vibration load, especially in high speed and light load conditions, the fatigue damage accumulation rating life model should be considered. The optimum preload has an obvious influence on fatigue rating life.

Originality/value

This paper used analytical method and model that is helpful for design of steel ball bearing in high speed, light load and vibration load conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0180/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 1 May 2023

Ai Yibo, Zhang Yuanyuan, Cui Hao and Zhang Weidong

This study aims to ensure the operation safety of high speed trains, it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material…

Abstract

Purpose

This study aims to ensure the operation safety of high speed trains, it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time, yet the traditional tests of mechanical property can hardly meet this requirement.

Design/methodology/approach

In this study the acoustic emission (AE) technology is applied in the tensile tests of the gearbox housing material of an high-speed rail (HSR) train, during which the acoustic signatures are acquired for parameter analysis. Afterward, the support vector machine (SVM) classifier is introduced to identify and classify the characteristic parameters extracted, on which basis the SVM is improved and the weighted support vector machine (WSVM) method is applied to effectively reduce the misidentification of the SVM classifier. Through the study of the law of relations between the characteristic values and the tensile life, a degradation model of the gearbox housing material amid tensile is built.

Findings

The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process, and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%. The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.

Originality/value

The results of this study provide new concepts for the life prediction of tensile samples, and more further tests should be conducted to verify the conclusion of this research.

Open Access
Article
Publication date: 22 October 2019

Li Xuemei, Yun Cao, Junjie Wang, Yaoguo Dang and Yin Kedong

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey…

3224

Abstract

Purpose

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey systems in marine economics is gaining importance. The purpose of this paper is to summarize and review literature on grey models, providing new directions in their application in the marine economy.

Design/methodology/approach

This paper organized seminal studies on grey systems published by Chinese core journal database – CNKI, Web of Science and Elsevier from 1982 to 2018. After searching the aforementioned database for the said duration, the authors used the CiteSpace visualization tools to analyze them.

Findings

The authors sorted the studies according to their countries/regions, institutions, keywords and categories using the CiteSpace tool; analyzed current research characteristics on grey models; and discussed their possible applications in marine businesses, economy, scientific research and education, marine environment and disasters. Finally, the authors pointed out the development trend of grey models.

Originality/value

Although researches are combining grey theory with fractals, neural networks, fuzzy theory and other methods, the applications, in terms of scope, have still not met the demand. With the increasingly in-depth research in marine economics and management, international marine economic research has entered a new period of development. Grey theory will certainly attract scholars’ attention, and its role in marine economy and management will gain considerable significance.

Details

Marine Economics and Management, vol. 2 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 25 October 2021

Junjie Lu

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Abstract

Purpose

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Design/methodology/approach

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals. First, a theoretical model of modified generalized Reynolds equation is derived with slipping effect of a micro gap for spiral groove gas seal. Second, the test technology examines micro-scale gas film vibration and stationary ring vibration to determine gas film stiffness by establishing a dynamic test system.

Findings

An optimum value of the spiral angle and groove depth for improved gas film stiffness is clearly seen: the spiral angle is 1.34 rad (76.8º) and the groove depth is 1 × 10–5 m. Moreover, it can be observed that optimal structural parameters can obtain higher gas film stiffness in the experiment. The average error between experiment and theory is less than 20%.

Originality/value

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 5 September 2022

Patrycja Klimas, Karina Sachpazidu, Sylwia Stańczyk, Michał Nadolny, Alicja Grześkowiak and Agnieszka Stanimir

This study examines what is the significance of the features of inter-organizational relationships in consecutive phases of the relationship life cycle.

Abstract

Purpose

This study examines what is the significance of the features of inter-organizational relationships in consecutive phases of the relationship life cycle.

Design/methodology/approach

Qu antitative, large-scale surveying was run on 786 software developers operating in Poland. The research hypothesis regarding the systematic increase of relational features (i.e. commitment, communication, (lack of) conflict, cooperation, intensity, investments, longevity, multidimensionality of bonds, trust, and velocity) across the particular relationship life cycle phase le (i.e. initial, development, maintenance, dormant/end, and reactivation) was verified using ANOVA and post-hoc tests.

Findings

The results show that the majority of considered features of inter-organizational relationships non-significantly but progressively strengthen from the initial phase, through the development phase, to the maintenance phase, then significantly weaken in the dormant/end phase and strengthen again in the reactivation phase. Interestingly, velocity–as the only examined feature–significantly increases in dormant/end and then decreases if the relationship is reactivated.

Originality/value

Prior studies were focusing on single feature, this one offers a holistic view considering ten relational facets. Moreover, this is one of the few research studies exploring the changes of relational features adopting the life cycle perspective.

Details

Journal of Organizational Change Management, vol. 35 no. 6
Type: Research Article
ISSN: 0953-4814

Keywords

Open Access
Article
Publication date: 30 October 2020

Jiao-Long Zhang, Xian Liu, Yong Yuan, Herbert A. Mang and Bernhard L.A. Pichler

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to…

Abstract

Purpose

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to the kinematic and static variables at the initial cross-section. The purpose of this paper is to demonstrate the significance of the transfer relations for structural analysis by means of three examples taken from civil engineering.

Design/methodology/approach

The first example refers to an arch bridge, the second one to the vault of a metro station and the third one to a real-scale test of a segmental tunnel ring.

Findings

The main conclusions drawn from these three examples are as follows: increasing the number of hangers/columns of the investigated arch bridge entails a reduction of the maximum bending moment of the arch, allowing it to approach, as much as possible, the desired thrust-line behavior; compared to the conventional in situ cast method, a combined precast and in situ cast method results in a decrease of the maximum bending moment of an element of the vault of the studied underground station by 46%; and the local behavior of the joints governs both the structural convergences and the bearing capacity of the tested segmental tunnel ring.

Originality/value

The three examples underline that the transfer relations significantly facilitate computer-aided engineering of circular arch structures, including arch bridges, vaults of metro stations and segmental tunnel rings.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Book part
Publication date: 30 July 2018

Abstract

Details

Marketing Management in Turkey
Type: Book
ISBN: 978-1-78714-558-0

1 – 10 of 196