Search results

1 – 7 of 7
Open Access
Article
Publication date: 7 May 2024

Mohammed Y. Fattah, Mahmood R. Mahmood and Mohammed F. Aswad

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry…

Abstract

Purpose

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude, load frequency, presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system. These variables are studied both experimentally and numerically. This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer, where a half full scale railway tests are conducted as well as a theoretical analysis is performed.

Design/methodology/approach

The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load. Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways. The investigated parameters are load amplitude, load frequency and presence of geogrid reinforcement layer. A half full-scale railway was constructed for carrying out the tests, which consists of two rails 800 mm in length with three wooden sleepers (900 mm × 90 mm × 90 mm). The ballast was overlying 500 mm thick clay layer. The tests were carried out with and without geogrid reinforcement, the tests were carried out in a well tied steel box of 1.5 m length × 1 m width × 1 m height. A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, was measured in reinforced and unreinforced ballast cases. In addition to the laboratory tests, the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.

Findings

It was concluded that the settlement increased with increasing the simulated train load amplitude, there is a sharp increase in settlement up to the cycle 500 and after that, there is a gradual increase to level out between, 2,500 and 4,500 cycles depending on the load frequency. There is a little increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton, but it is higher when the load amplitude increased to 2 ton, the increase in settlement depends on the geogrid existence and the other studied parameters. Both experimental and numerical results showed the same behavior. The effect of load frequency on the settlement ratio is almost constant after 500 cycles. In general, for reinforced cases, the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2% compared with the unreinforced case.

Originality/value

Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%. This ascertains the efficiency of ballast in spreading the waves induced by the track.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 9 March 2023

Frederick Owusu Danso, Kofi Agyekum, Patrick Manu, Emmanuel Adinyira, Divine K. Ahadzie and Edward Badu

Although many health and safety (H&S) studies have widely examined safety risk perception in the construction industry, few studies have explored how this perception influences…

Abstract

Purpose

Although many health and safety (H&S) studies have widely examined safety risk perception in the construction industry, few studies have explored how this perception influences site workers' risk-taking behaviours during construction. This study aims to examine how construction site workers perceive and judge safety risks in risk-taking behaviours of site workers for intervention safety policy framework that may encourage safe work.

Design/methodology/approach

The study employed Pictorial-based Q-Methodology, which documented 63 picture scenarios of risk-taking behaviours from building sites and submitted them for validation from H&S inspectors. In total, 33 pictures emerged as having great potential to cause harm. After using these 33 pictures to elicit data from randomised site workers, the study used Frequency Tabulation, Relative Importance Index (RII) and Kruskal–Wallis Test to analyse the collected data. To fully explain the analysed data for deeper understanding, the study conducted Focus Group Discussions (FGDs) with these site workers to share the thoughts of site workers on these pictures.

Findings

Two distinctive pictures emerged from these analyses: one showing risk-taking behaviour likely to contract internal and skin disease and the other likely to fall from height. One of the implications is that construction site workers are unfamiliar with the dangerous contaminants in the materials the site workers use to work, which can potentially harm the site workers' skin and internal organs. Hence, site workers continue engaging in risk-taking behaviours. The other is that site workers are aware of and can mention catastrophic physical injuries attached to site workers' jobs. However, site workers continue engaging in risk-taking behaviours because of site workers' safety plights and rely on the favour and mercies of a supreme being as coping strategies to escape from these physical injuries.

Originality/value

This study is original in that the study uses picture scenarios of risk-taking behaviours to amass an empirical-based understanding of how site workers perceive and respond to H&S risks during construction. This piece of evidence is missing in the numerous research studies in this area. Again, the findings contribute to the state-of-the-art literature regarding risk-taking behaviours on construction sites.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Xue Nan, Xuan Chao Huang, Mengyao Huang, Xuefan Wang, Youping Zhu, Yayun Li, Shifei Shen and Ming Fu

The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.

Abstract

Purpose

The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.

Design/methodology/approach

The maximum residual impact load and specific impact energy absorption rate of STF-filled foam are studied with varying thickness (4–14 mm), densities (0.35–0.6 g/cm3) and hardness (40–50 Rockwell Hardness C Scale (HRC)) under different ambient temperatures (−20−20 °C) and impact energies (25–75 J).

Findings

The following conclusions are obtained from this study: (1) the higher the impact energy, the greater the maximum residual impact force and energy absorption efficiency of the material; (2) the impact resistance of STF-filled foam can be improved with the decrease of ambient temperature, achieving the highest energy absorption rate at −10?. (3) STF-filled foam substrate has the highest impact resistance, the lowest maximum residual impact force and the highest energy absorption coefficient when the density is 0.35  g/cm3, the hardness is 45HC and the thickness is 10 mm.

Originality/value

This is the first paper to analyze the impact of both environmental factors and material properties on the impact resistance of STF-filled foam. The results show that the decrease in temperature and the increase in hardness can enhance the impact resistance of STF-filled foam.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 June 2023

Sarasadat Alavi, Ali Bozorgi-Amiri and Seyed Mohammad Seyedhosseini

Fortification-interdiction models provide system designers with a broader perspective to identify and protect vital components. Based on this concept, the authors examine how…

Abstract

Purpose

Fortification-interdiction models provide system designers with a broader perspective to identify and protect vital components. Based on this concept, the authors examine how disruptions impact critical supply systems and propose the most effective protection strategies based on three levels of decision-makers. This paper aims to investigate location and fortification decisions at the first level. Moreover, a redesign problem is presented in the third level to locate backup facilities and reallocate undisrupted facilities following the realization of the disruptive agent decisions at the second level.

Design/methodology/approach

To address this problem, the authors develop a tri-level planner-attacker-defender optimization model. The model minimizes investment and demand satisfaction costs and alleviates maximal post-disruption costs. While decisions are decentralized at different levels, the authors develop an integrated solution algorithm to solve the model using the column-and-constraint generation (CCG) method.

Findings

The model and the solution approach are tested on a real supply system consisting of several hospitals and demand areas in a region in Iran. Results indicate that incorporating redesign decisions at the third level reduces maximum disruption costs.

Originality/value

The paper makes the following contributions: presenting a novel tri-level optimization model to formulate facility location and interdiction problems simultaneously, considering corrective measures at the third level to reconfigure the system after interdiction, creating a resilient supply system that can fulfill all demands after disruptions, employing a nested CCG method to solve the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 4 August 2023

Dilpreet Kaur Dhillon, Pranav Mahajan and Kuldip Kaur

Distancing people socially as a precautionary measure against the mushrooming of COVID-19’s health and economic crisis has deleteriously affected the performance of the eatery…

Abstract

Purpose

Distancing people socially as a precautionary measure against the mushrooming of COVID-19’s health and economic crisis has deleteriously affected the performance of the eatery industry to a great extent. Many food outlets failed to cope up with crisis and opted to move out, and many still vie to survive through pandemic. It becomes vital for researchers to understand what factors influence the performance and survival of eateries during the pandemic? The study makes an attempt to fabricate new factors which affect the performance and contribute significantly towards the survival of eateries in this new COVID-19-prone world.

Design/methodology/approach

The present study is a cross-sectional analysis with the sample of 150 eateries from the walled city of Punjab (India), i.e. Amritsar. Factor analysis is employed to scrutinise the factors which influence the performance of eateries during the pandemic, and to analyse factors which contribute significantly for the survival of eateries, logistic regression is performed.

Findings

The empirical analysis reveals that at prior psychological factor, followed by turnover factor, external factor, financial factor and marketing factor influence the performance of eateries during the pandemic. Only three factors, namely turnover factor, external factor and financial factor, turned up to be significant towards the survival rate of an eatery. The marketing factor which is a crucial contributor for survival of business in literature has turned out to be insignificant during the times of pandemic.

Originality/value

With the arrival of pandemic, the preference of people has changed, and the business environment in which entities operate has turned more complex. The present study is one of the pioneer attempts to evaluate whether the factors responsible for performance or survival of an eatery during normal times is relevant during the pandemic as well. The study contributes to the literature of eatery industry by adding a new variable namely psychological factor, i.e. changes witnessed in customers’ preference to visit an eatery.

Details

International Hospitality Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2516-8142

Keywords

Article
Publication date: 22 April 2024

Hesham Mohsen Hussein Omar, Mohamed Fawzy Aly Mohamed and Said Megahed

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper…

Abstract

Purpose

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper studies the applicability of different CG designs and the efficiency of some design parameters.

Design/methodology/approach

After reviewing a number of different papers, two designs were selected for a number of exploratory experiments. Using design of experiments (DOE) techniques to identify important design parameters. Finally, the efficiency of the parts was investigated.

Findings

The research finds that a simpler design sacrifices some effectiveness in exchange for a remarkable decrease in production cost. Decreasing infill percentage of previous designs and 3D printing them, out of TPU, experimenting with different parameters yields functional products. Moreover, the paper identified some key parameters for further optimization attempts of such prototypes.

Research limitations/implications

The cost of conducting FFF experiments for TPU increases dramatically with product size, number of parameters studied and the number of experiments. Therefore, all three of these factors had to be kept at a minimum. Further confirmatory experiments encouraged.

Originality/value

This paper addresses an identified need to investigate applications of FFF and TPU in manufacturing functional efficient flexible mechanisms, grippers specifically. While most research focused on designing for increased performance, some research lacks discussion on design philosophy, as well as manufacturing issues. As the needs for flexible grippers vary from high-performance grippers to lower performance grippers created for specific functions/conditions, some effectiveness can be sacrificed to reduce cost, reduce complexity and improve applicability in different robotic assemblies and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 April 2024

Shuyuan Xu, Jun Wang, Xiangyu Wang, Wenchi Shou and Tuan Ngo

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s…

Abstract

Purpose

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s condition information (i.e. defects), improve the efficiency and accuracy of bridge inspections by supporting practitioners and even machines with digitalised expert knowledge, and ultimately automate the process.

Design/methodology/approach

The research design consists of three major phases so as to (1) categorise common defect with regard to physical entities (i.e. bridge element), (2) establish internal relationships among those defects and (3) relate defects to their properties and potential causes. A mixed-method research approach, which includes a comprehensive literature review, focus groups and case studies, was employed to develop and validate the proposed defect model.

Findings

The data collected through the literature and focus groups were analysed and knowledge were extracted to form the novel defect model. The defect model was then validated and further calibrated through case study. Inspection reports of nearly 300 bridges in China were collected and analysed. The study uncovered the relationships between defects and a variety of inspection-related elements and represented in the form of an accessible, digitalised and user-friendly knowledge model.

Originality/value

The contribution of this paper is the development of a defect model that can assist inexperienced practitioners and even machines in the near future to conduct inspection tasks. For one, the proposed defect model can standardise the data collection process of bridge inspection, including the identification of defects and documentation of their vital properties, paving the path for the automation in subsequent stages (e.g. condition evaluation). For another, by retrieving rich experience and expert knowledge which have long been reserved and inherited in the industrial sector, the inspection efficiency and accuracy can be considerably improved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 7 of 7