Search results

1 – 10 of 229

Abstract

Details

Applied Spirituality and Sustainable Development Policy
Type: Book
ISBN: 978-1-83753-381-7

Book part
Publication date: 14 December 2023

Anneloes Smitsman

The call for a new paradigm in politics and governance has become a planetary imperative. Humanity is at a critical juncture; unless we mature as a species and become net-positive…

Abstract

The call for a new paradigm in politics and governance has become a planetary imperative. Humanity is at a critical juncture; unless we mature as a species and become net-positive to nature the human experiment may (soon) end. We have become our own biggest threat. This chapter explores the foundations, as well as systemic barriers, for the shift to a new and life-centred paradigm in politics and governance. Offering a systemic exploration of the root causes of our sustainability crises and how to address this, based on the cosmology and evolutionary principles of complex living systems. Applying Living Systems Protocols from the EARTHwise Constitution for a Planetary Civilization, and its framework of five Future Archetypes, for developing our transformative capacities to address the systemic thrivability barriers of mechanistic systems and worldviews. With case-study examples of new paradigm tools, systems and technologies that enable a decentralization of governance and democratization of ownership. As such empowering the systemic conditions and maturation pathways for a thriving planetary civilization. The chapter completes with a brief practice for developing our future human capacities and inner consciousness shifts for a new paradigm in politics and governance.

Details

Applied Spirituality and Sustainable Development Policy
Type: Book
ISBN: 978-1-83753-381-7

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 October 2023

Sapna Pandit, Pooja Verma, Manoj Kumar and Poonam

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential…

Abstract

Purpose

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential quadrature method (LRBF-DQM) to simulate the multidimensional hyperbolic wave models and work is an extension of Jiwari (2015).

Design/methodology/approach

In the evolvement of the first algorithm, the time derivative is discretized by the forward FD scheme and the Crank-Nicolson scheme is used for the rest of the terms. After that, the LRBF-FD approximation is used for spatial discretization and quasi-linearization process for linearization of the problem. Finally, the obtained linear system is solved by the LU decomposition method. In the development of the second algorithm, semi-discretization in space is done via LRBF-DQM and then an explicit RK4 is used for fully discretization in time.

Findings

For simulation purposes, some 1D and 2D wave models are pondered to instigate the chastity and competence of the developed algorithms.

Originality/value

The developed algorithms are novel for the multidimensional hyperbolic wave models. Also, the stability analysis of the second algorithm is a new work for these types of model.

Book part
Publication date: 14 December 2023

Divya Bhatnagar and Sudip Patra

An ecologically sustainable future calls for fruitful dialogues between spirituality, modern science and policymaking at large. What could be that connects them all? We found out…

Abstract

An ecologically sustainable future calls for fruitful dialogues between spirituality, modern science and policymaking at large. What could be that connects them all? We found out that ideas about holism exist across time, space, culture and thinkers – ranging from mathematics, philosophy, sociology, medicine, education, religion and quantum physics to finding its roots in ancient Indian Vedic tradition and later usage in Greek and Roman cultures.

This chapter takes a look at the history and intricacies of two seemingly distinct but interconnected fields – spirituality and modern science, particularly quantum science – with an aim to uncover what these fields can teach us about the idea of holism. This chapter, therefore, highlights one of the most fundamental and profound spiritual principles of the unity and interconnectedness of the entire universe – encapsulated in the concept of holism – and its practical applications in approaching sustainable development. We hope to ignite further research on this topic.

Details

Applied Spirituality and Sustainable Development Policy
Type: Book
ISBN: 978-1-83753-381-7

Keywords

Article
Publication date: 29 November 2023

Na Zhang, Haiyan Wang and Zaiwu Gong

Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of…

Abstract

Purpose

Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of bull's eye is frequently subjective, and each stage is considered independent of the others. Interference effects between each stage can easily influence one another. To address these challenges effectively, this paper employs quantum probability theory to construct quantum-like Bayesian networks, addressing interference effects in dynamic multi-attribute group decision-making.

Design/methodology/approach

Firstly, the bull's eye matrix of the scheme stage is derived based on the principle of group negotiation and maximum satisfaction deviation. Secondly, a nonlinear programming model for stage weight is constructed by using an improved Orness measure constraint to determine the stage weight. Finally, the quantum-like Bayesian network is constructed to explore the interference effect between stages. In this process, the decision of each stage is regarded as a wave function which occurs synchronously, with mutual interference impacting the aggregate result. Finally, the effectiveness and rationality of the model are verified through a public health emergency.

Findings

The research shows that there are interference effects between each stage. Both the dynamic grey target group decision model and the dynamic multi-attribute group decision model based on quantum-like Bayesian network proposed in this paper are scientific and effective. They enhance the flexibility and stability of actual decision-making and provide significant practical value.

Originality/value

To address issues like stage interference effects, subjective bull's eye settings and the absence of participative behavior in decision-making groups, this paper develops a grey target decision model grounded in group negotiation and maximum satisfaction deviation. Furthermore, by integrating the quantum-like Bayesian network model, this paper offers a novel perspective for addressing information fusion and subjective cognitive biases during decision-making.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 15 August 2023

Olivier Dupouët, Yoann Pitarch, Marie Ferru and Bastien Bernela

This study aims to explore the interplay between community dynamics and knowledge production using the quantum computing research field as a case study. Quantum computing holds…

126

Abstract

Purpose

This study aims to explore the interplay between community dynamics and knowledge production using the quantum computing research field as a case study. Quantum computing holds the promise of dramatically increasing computation speed and solving problems that are currently unsolvable in a short space of time. In this highly dynamic area of innovation, computer companies, research laboratories and governments are racing to develop the field.

Design/methodology/approach

After constructing temporal co-authorship networks, the authors identify seven different events affecting communities of researchers, which they label: forming, growing, splitting, shrinking, continuing, merging, dissolving. The authors then extract keywords from the titles and abstracts of their contributions to characterize the dynamics of knowledge production and examine the relationship between community events and knowledge production over time.

Findings

The findings show that forming and splitting are associated with retaining in memory what is currently known, merging and growing with the creation of new knowledge and splitting, shrinking and dissolving with the curation of knowledge.

Originality/value

Although the link between communities and knowledge has long been established, much less is known about the relationship between the dynamics of communities and their link with collective cognitive processes. To the best of the authors’ knowledge, the present contribution is one of the first to shed light on this dynamic aspect of community knowledge production.

Details

Journal of Knowledge Management, vol. 28 no. 3
Type: Research Article
ISSN: 1367-3270

Keywords

Open Access
Article
Publication date: 26 July 2023

Fong Yew Leong, Dax Enshan Koh, Wei-Bin Ewe and Jian Feng Kong

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular…

1131

Abstract

Purpose

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular entangling layers. A graphical mapping technique for encoding impulse functions is also proposed.

Design/methodology/approach

The Smoluchowski equation, including the Derjaguin–Landau–Verwey–Overbeek potential energy, is solved to simulate colloidal deposition on a planar wall. The performance of different types of entangling layers and over-parameterization is evaluated.

Findings

Colloidal transport can be modelled adequately with variational quantum simulations. Full circular entangling layers with real-amplitude ansätze lead to higher-fidelity solutions. In most cases, the proposed graphical mapping technique requires only a single bit-flip with a parametric gate. Over-parameterization is necessary to satisfy certain physical boundary conditions, and higher-order time-stepping reduces norm errors.

Practical implications

Variational quantum simulation can solve partial differential equations using near-term quantum devices. The proposed graphical mapping technique could potentially aid quantum simulations for certain applications.

Originality/value

This study shows a concrete application of variational quantum simulation methods in solving practically relevant partial differential equations. It also provides insight into the performance of different types of entangling layers and over-parameterization. The proposed graphical mapping technique could be valuable for quantum simulation implementations. The findings contribute to the growing body of research on using variational quantum simulations for solving partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 September 2023

Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…

Abstract

Purpose

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.

Design/methodology/approach

First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.

Findings

Gallic acid can be used as a corrosion inhibitor or coating in metal protection.

Research limitations/implications

There is a lack of research on the synergistic improvement of gallic acid and other substances.

Practical implications

The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.

Originality/value

To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 February 2024

Miguel Núñez-Merino, Juan Manuel Maqueira-Marín, José Moyano-Fuentes and Carlos Alberto Castaño-Moraga

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational…

Abstract

Purpose

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational agility capability in Industry 4.0 manufacturing and logistics operations.

Design/methodology/approach

A multi-case study approach is used to determine the impact of quantum-inspired computing technology in manufacturing and logistics processes from the supplier perspective. A literature review provides the basis for a framework to identify a set of flexibility and agility operational capabilities enabled by Industry 4.0 Information and Digital Technologies. The use cases are analyzed in depth, first individually and then jointly.

Findings

Study results suggest that quantum-inspired computing technology has the potential to harness and boost companies' operational flexibility to enhance operational agility in manufacturing and logistics operations management, particularly in the Industry 4.0 context. An exploratory model is proposed to explain the relationships between quantum-inspired computing technology and the deployment of operational agility capabilities.

Originality/value

This is study explores the use of quantum-inspired computing technology in Industry 4.0 operations management and contributes to understanding its potential to enable operational agility capability in manufacturing and logistics operations.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

1 – 10 of 229