Search results

1 – 2 of 2
Open Access
Article
Publication date: 25 February 2020

Zsolt Tibor Kosztyán, Tibor Csizmadia, Zoltán Kovács and István Mihálcz

The purpose of this paper is to generalize the traditional risk evaluation methods and to specify a multi-level risk evaluation framework, in order to prepare customized risk

3634

Abstract

Purpose

The purpose of this paper is to generalize the traditional risk evaluation methods and to specify a multi-level risk evaluation framework, in order to prepare customized risk evaluation and to enable effectively integrating the elements of risk evaluation.

Design/methodology/approach

A real case study of an electric motor manufacturing company is presented to illustrate the advantages of this new framework compared to the traditional and fuzzy failure mode and effect analysis (FMEA) approaches.

Findings

The essence of the proposed total risk evaluation framework (TREF) is its flexible approach that enables the effective integration of firms’ individual requirements by developing tailor-made organizational risk evaluation.

Originality/value

Increasing product/service complexity has led to increasingly complex yet unique organizational operations; as a result, their risk evaluation is a very challenging task. Distinct structures, characteristics and processes within and between organizations require a flexible yet robust approach of evaluating risks efficiently. Most recent risk evaluation approaches are considered to be inadequate due to the lack of flexibility and an inappropriate structure for addressing the unique organizational demands and contextual factors. To address this challenge effectively, taking a crucial step toward customization of risk evaluation.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 28 May 2019

Olanrewaju Ayobami Omoya, Kassandra A. Papadopoulou and Eric Lou

The purpose of this paper is to investigate the application of reliability engineering to oil and gas (O&G) pipeline systems with the aim of identifying means through which…

3066

Abstract

Purpose

The purpose of this paper is to investigate the application of reliability engineering to oil and gas (O&G) pipeline systems with the aim of identifying means through which reliability engineering can be used to improve pipeline integrity, specifically with regard to man-made incidents (e.g. material/weld/equipment failure, corrosion, incorrect operation and excavation damages).

Design/methodology/approach

A literature review was carried out on the application of reliability tools to O&G pipeline systems and four case studies are presented as examples of how reliability engineering can help to improve pipeline integrity. The scope of the paper is narrowed to four stages of the pipeline life cycle; the decommissioning stage is not part of this research. A survey was also carried out using a questionnaire to check the level of application of reliability tools in the O&G industry.

Findings

Data from survey and literature show that a reliability-centred approach can be applied and will improve pipeline reliability where applied; however, there are several hindrances to the effective application of reliability tools, the current methods are time based and focus mainly on design against failure rather than design for reliability.

Research limitations/implications

The tools identified do not cover the decommissioning of the pipeline system. Research validation sample size can be broadened to include more pipeline stakeholders/professionals. Pipeline integrity management systems are proprietary information and permission is required from stakeholders to do a detailed practical study.

Originality/value

This paper proposes the minimum applied reliability tools for application during the design, operation and maintenance phases targeted at the O&G industry. Critically, this paper provides a case for an integrated approach to applying reliability and maintenance tools that are required to reduce pipeline failure incidents in the O&G industry.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Access

Only Open Access

Year

Content type

1 – 2 of 2