Search results

1 – 9 of 9
Article
Publication date: 3 October 2019

Arash Naji

Progressive collapse refers to a phenomenon, in which local damage in a primary structural component leads to total or partial structural system failure, without any…

Abstract

Purpose

Progressive collapse refers to a phenomenon, in which local damage in a primary structural component leads to total or partial structural system failure, without any proportionality between the initial and final damage. Robustness is a measure that demonstrates the strength of a structure to resist progressive collapse. Static pushdown and nonlinear dynamic analysis were two main procedures to calculate the capacity of structures to resist progressive collapse. According to previous works, static analysis would lead to inaccurate results. Meanwhile, capacity analysis by dynamic analysis needs several reruns and encountering numerical instability is inevitable. The purpose of this paper is to present the formulation of a solution procedure to determine robustness of steel moment resisting frames, using plastic limit analysis (PLA).

Design/methodology/approach

This formulation utilizes simplex optimization to solve the problem. Static pushdown and incremental dynamic methods are used for verification.

Findings

The results obtained from PLA have good agreement with incremental analysis results. While incremental dynamic analysis is a very demanding method, PLA can be utilized as an alternative method.

Originality/value

The formulation of progressive collapse resistance of steel moment frames by means of PLA is not proposed in previous research works.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Article
Publication date: 21 July 2022

Amar Messas, Karim Benyahi, Arezki Adjrad, Youcef Bouafia and Sarah Benakli

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a…

Abstract

Purpose

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a capacity ratio necessary to reach a structural plastic mechanism. To find the capacity ratio allowing to achieve a fairly ductile behavior in reinforced concrete frames, it is necessary to validate this concept by a non-linear static analysis (push-over). However, this analysis is carried out by the use of the ETABS software, and by the introduction into the beams and columns of plastic hinges according to FEMA-356 code.

Design/methodology/approach

This approach makes it possible to assess seismic performance, which facilitates the establishment of a system for detecting the plasticization mechanisms of structures. It is also necessary to use a probabilistic method allowing to treat the dimensioning by the identification of the most probable mechanisms and to take only those that contribute the most to the probability of global failure of the structural system.

Findings

In this study, three reinforced concrete frame buildings with different numbers of floors were analyzed by varying the capacity ratio of the elements. The results obtained indicate that it is strongly recommended to increase the ratio of the resistant moments of the columns on those of the beams for the Algerian seismic regulation (RPA code), knowing that the frameworks in reinforced concrete are widespread in the country.

Originality/value

The main interest of this paper is to criticize the resistance condition required by RPA code, which must be the subject of particular attention to reach a mechanism of favorable collapse. This study recommends, on the basis of a reliability analysis, the use of a capacity dimensioning ratio greater than or equal to two, making it possible to have a sufficiently low probability of failure to ensure a level of security for users.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 March 2020

Behrooz Yousefi, Mohammad Reza Esfahani and Mohammadreza Tavakkolizadeh

This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.

Abstract

Purpose

This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.

Design/methodology/approach

In this work, an exact multi-directional stiffness matrix is analytically derived based on the post-cracking bond-slip interaction between concrete and steel bars. The approach is also extended for large displacement analysis using Green–Lagrange finite strain tensor. In the proposed formulation, the weak form of governed differential equations is approximated by a trial-function expansion based on a finite strain-description and an additional degree of freedom for steel bars.

Findings

The findings provide a realistic description of cracking in the concrete structure. Numerical studies are conducted to examine the accuracy of the suggested approach and its capability to predict fairly complex responses of RC models. The findings prove that the proposed element can evaluate local and global responses of RC members, and it can be used as a reliable tool to reflect bond-slip effects in large displacement level. This leads to a robust and precise model for non-linear analysis of RC structures.

Originality/value

The methodology is capable of simulating coupled inelastic shear-flexural behavior of RC members through local stress field theory and Timoshenko beam model.

Article
Publication date: 23 November 2010

Nils Hoeller, Christoph Reinke, Jana Neumann, Sven Groppe, Christian Werner and Volker Linnemann

In the last decade, XML has become the de facto standard for data exchange in the world wide web (WWW). The positive benefits of data exchangeability to support system and…

Abstract

Purpose

In the last decade, XML has become the de facto standard for data exchange in the world wide web (WWW). The positive benefits of data exchangeability to support system and software heterogeneity on application level and easy WWW integration make XML an ideal data format for many other application and network scenarios like wireless sensor networks (WSNs). Moreover, the usage of XML encourages using standardized techniques like SOAP to adapt the service‐oriented paradigm to sensor network engineering. Nevertheless, integrating XML usage in WSN data management is limited by the low hardware resources that require efficient XML data management strategies suitable to bridge the general resource gap. The purpose of this paper is to present two separate strategies on integrating XML data management in WSNs.

Design/methodology/approach

The paper presents two separate strategies on integrating XML data management in WSNs that have been implemented and are running on today's sensor node platforms. The paper shows how XML data can be processed and how XPath queries can be evaluated dynamically. In an extended evaluation, the performance of both strategies concerning the memory and energy efficiency are compared and both solutions are shown to have application domains fully applicable on today's sensor node products.

Findings

This work shows that dynamic XML data management and query evaluation is possible on sensor nodes with strict limitations in terms of memory, processing power and energy supply.

Originality/value

The paper presents an optimized stream‐based XML compression technique and shows how XML queries can be evaluated on compressed XML bit streams using generic pushdown automata. To the best of the authors' knowledge, this is the first complete approach on integrating dynamic XML data management into WSNs.

Details

International Journal of Web Information Systems, vol. 6 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 10 April 2017

Lan Lin, Adel Hanna, Anup Sinha and Lucia Tirca

Differential settlement between foundations’ elements induces additional stresses in the structural elements. In general, the amount of settlement that a structure can undergo…

Abstract

Purpose

Differential settlement between foundations’ elements induces additional stresses in the structural elements. In general, the amount of settlement that a structure can undergo without distress is large, provided that the structure settles uniformly. However, based on the fact that the soil under the foundation may not be uniform in nature and the loads transferred from the superstructure to the foundation are variable, differential settlements between the foundation elements are expected. The purpose of this paper is to evaluate the stresses induced in a typical ten-storey reinforced concrete building subjected to excessive differential settlement.

Design/methodology/approach

In this investigation, excessive differential settlement up to 75 mm is assigned to the center column on the ground floor that represents the most critical case. A three-dimensional finite element model is developed to perform structural analysis using the software SAP2000, and the nonlinear static pushover analysis is performed.

Findings

The results of this study show that the building behaves elastically up to 25 mm of differential settlement between its foundation elements, which agrees well with the recommendation given in design manuals. Beyond this value, significant inelastic response is observed in the lower floors and decreases gradually in the higher floors and accordingly, some members have consumed the factor of safety and are in the verge of failure.

Originality/value

Based on the results of this study, recommendations are made for better communication between the structure and the geotechnical engineers to either limit the differential settlements or incorporate these additional stresses during the design stage of the building. Furthermore, the results of the study can be used to recommend to building codes or design manuals to add a load component due to the anticipated differential settlements of the foundation.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 July 2020

Sathiyamoorthy Margabandu and Senthilkumar Subramaniam

This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid…

Abstract

Purpose

This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites.

Design/methodology/approach

The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes.

Findings

The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev.

Originality/value

The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 June 2014

Dusan Repel and Ingo Stengel

This research aims to propose an attack that de-obfuscates codes by exploiting the properties of context-free grammars since it is important to understand the strength of…

Abstract

Purpose

This research aims to propose an attack that de-obfuscates codes by exploiting the properties of context-free grammars since it is important to understand the strength of obfuscation provided by context-free grammar-based obfuscators. In addition, the possibility of automatically generated transformations is explored.

Design/methodology/approach

As part of our empirical investigation, a development environment for obfuscating transformations is built. The tool is used to simulate a context-free obfuscator and to devise ways of reversing such transformations. Furthermore, a theoretical investigation of subset grammars and subset languages is carried out.

Findings

It is concluded that context-free grammar-based obfuscators provide limited levels of protection. Nevertheless, their application is appropriate when combined with other obfuscating techniques.

Research limitations/implications

The algorithms behave as expected on a limited number of test samples. Further work is required to increase their practicality and to establish their average reliability.

Originality/value

This research shows how a frequency analysis attack can threaten the security of code scrambled by context-free grammar-based obfuscators.

Details

Information Management & Computer Security, vol. 22 no. 2
Type: Research Article
ISSN: 0968-5227

Keywords

Article
Publication date: 4 April 2008

Sherif Sakr

Estimating the sizes of query results and intermediate results is crucial to many aspects of query processing. All database systems rely on the use of cardinality estimates to…

1604

Abstract

Purpose

Estimating the sizes of query results and intermediate results is crucial to many aspects of query processing. All database systems rely on the use of cardinality estimates to choose the cheapest execution plan. In principle, the problem of cardinality estimation is more complicated in the Extensible Markup Language (XML) domain than the relational domain. The purpose of this paper is to present a novel framework for estimating the cardinality of XQuery expressions as well as their sub‐expressions. Additionally, this paper proposes a novel XQuery cardinality estimation benchmark. The main aim of this benchmark is to establish the basis of comparison between the different estimation approaches in the XQuery domain.

Design/methodology/approach

As a major innovation, the paper exploits the relational algebraic infrastructure to provide accurate estimation in the context of XML and XQuery domains. In the proposed framework, XQuery expressions are translated into an equivalent relational algebraic plans and then using a well defined set of inference rules and a set of special properties of the algebraic plan, this framework is able to provide high‐accurate estimation for XQuery expressions.

Findings

This paper is believed to be the first which provides a uniform framework to estimate the cardinality of more powerful XML querying capabilities using XQuery expressions as well as their sub‐expressions. It exploits the relational algebraic infrastructure to provide accurate estimation in the context of XML and XQuery domains. Moreover, the proposed framework can act as a meta‐model through its ability to incorporate different summarized XML structures and different histogram techniques which allows the model designers to achieve their targets by focusing their effort on designing or selecting the adequate techniques for them. In addition, this paper proposes benchmark for XQuery cardinality estimation systems. The proposed benchmark distinguishes itself from the other existing XML benchmarks in its focus on establishing the basis for comparing the different estimation approaches in the XML domain in terms of their accuracy of the estimations and their completeness in handling different XML querying features.

Research limitations/implications

The current status of this proposed XQuery cardinality estimations framework does not support the estimation of the queries over the order information of the source XML documents and does not support non‐numeric predicates.

Practical implications

The experiments of this XQuery cardinality estimation system demonstrate its effectiveness and show high‐accurate estimation results. Utilizing the cardinality estimation properties during the SQL translation of XQuery expression results in an average improvement of 20 percent on the performance of their execution times.

Originality/value

This paper presents a novel framework for estimating the cardinality of XQuery expressions as well as its sub‐expressions. A novel XQuery cardinality estimation benchmark is introduced to establish the basis of comparison between the different estimation approaches in the XQuery domain.

Details

International Journal of Web Information Systems, vol. 4 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 12 June 2017

Farshad Hashemi Rezvani, Behrouz Behnam, Hamid Reza Ronagh and M. Shahria Alam

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of…

Abstract

Purpose

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of the design earthquake pertinent to the structure by investigating a generic eight-story building.

Design/methodology/approach

The structure is first pushed to arrive at a target roof displacement corresponding to life safety level of performance. To simulate the post-earthquake beam-removal scenario, one of the beam elements is suddenly removed from the structure at a number of different positions. The structural response is then evaluated by using nonlinear static and dynamic analyses.

Findings

The results show that while no failure is observed in all of the scenarios, the vulnerability of the upper stories is much greater than that of the lower stories. In the next step, the structural resistance to such scenarios is determined. The results confirm that for the case study structure, at most, the resistance to failure progression in upper stories is 58 percent more than that of lower stories.

Originality/value

Failure and fracture of beam-to-column connections resulting in removal of beam elements may lead to a chain of subsequent failures in other structural members and eventually lead to progressive collapse in some cases. Deficiency in design or construction process of structures when combined by application of seismic loads may lead to such an event.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 9 of 9