Search results

1 – 10 of 528
Article
Publication date: 2 May 2024

Santosh Kumar Sahu, P.S. Rama Sreekanth, Y.P. Deepthi, Quanjin Ma and Tunji John Erinle

This study aims to investigate the mechanical properties of sustainable recycled polypropylene (rPP) composite materials integrated with spherical silicon carbide (SiC) particles.

Abstract

Purpose

This study aims to investigate the mechanical properties of sustainable recycled polypropylene (rPP) composite materials integrated with spherical silicon carbide (SiC) particles.

Design/methodology/approach

A representative volume element (RVE) analysis is employed to predict the Young’s modulus of rPP filled with spherical-shaped SiC at varying volume percentages (i.e. 10, 20 and 30%).

Findings

The investigation reveals that the highest values of Young’s modulus, tensile strength, flexural strength and mode 1 frequency are observed for the 30% rPP/SiC samples, exhibiting increases of 115, 116, 62 and 15%, respectively, compared to pure rPP. Fractography analysis confirms the ductile nature of pure rPP and the brittle behavior of the 30% rPP/SiC composite. Moreover, the RVE method predicts Young’s modulus more accurate than micromechanical models, aligning closely with experimental results. Additionally, results from ANSYS simulation tests show tensile strength, flexural strength and frequency within a 10% error range when compared to experimental data.

Originality/value

This study contributes to the field by demonstrating the mechanical enhancements achievable through the incorporation of sustainable materials like rPP/SiC, thereby promoting environmentally friendly engineering solutions.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 May 2024

Hui Zhao, Shunzhen Ren, Zhengbo Zhong, Zhipeng Li and Tianhui Ren

This study aims to reveal the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease.

Abstract

Purpose

This study aims to reveal the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease.

Design/methodology/approach

The authors prepared a molybdenum dialkyl dithiocarbamate (MoDTC) and revealed the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease by combining with ZDDP and P-containing and S-free additives.

Findings

The MoDTC the authors prepared has good friction-reducing and anti-wear properties in aluminum-based grease and has an obvious synergistic effect with ZDDP. MoDTC and ZDDP have a significant synergistic effect on the tribological properties in aluminum-based grease, mainly because of the formation of phosphates and metaphosphates as well as more MoS2 in the friction film. P element plays a facilitating role in the chemical conversion of MoDTC to MoS2.

Originality/value

The experiments of MoDTC with tributyl phosphate and trimethylphenyl phosphate confirm that the P element plays a facilitating role in the chemical conversion of MoDTC into MoS2.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0410

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 May 2024

Sally Elkatatny, Lamiaa Zaky, Walaa Abdelaziem and Aliaa Abdelfatah

This study aims to investigate the corrosion behavior of cold-rolled Fe35Ni20Cr12Mn(28-x)Alx high-entropy alloys (HEAs) using the potentiodynamic polarization technique in 1 M H2SO…

Abstract

Purpose

This study aims to investigate the corrosion behavior of cold-rolled Fe35Ni20Cr12Mn(28-x)Alx high-entropy alloys (HEAs) using the potentiodynamic polarization technique in 1 M H2SO4 acid. Additionally, the influence of molybdenum (Mo) additions as inhibitors and the effect of variations in cold rolling reduction ratios and Al content on corrosion behavior are examined.

Design/methodology/approach

Two cold rolling reduction ratios, namely, 50% (R50) and 90% (R90), were examined for the cold-rolled Fe35Ni20Cr12Mn28Al5 (Al5) and Fe35Ni20Cr12Mn23Al10 (Al10) HEAs. Mo inhibitor additions were introduced at varying concentrations of 0.3, 0.6 and 0.9 Wt.%. The potentiodynamic polarization technique was used to evaluate the corrosion rates (CRs) under different experimental conditions.

Findings

The results indicate that the addition of 0.3 Wt.% Mo in 1 M H2SO4 yielded the lowest CR for both R50 and R90, irrespective of the Al content in the HEAs. However, the highest CR was observed at 0.6 Wt.% Mo addition. Furthermore, increasing the concentration of Al resulted in a corresponding rise in the CR. Comparatively, the CR decreased significantly when the cold rolling reduction ratio increased from R50 to R90.

Originality/value

This research provides valuable insights into the intricate relationship between Mo inhibitors, cold rolling reduction ratio, Al content and the resulting corrosion behavior of Fe35Ni20Cr12Mn(28-x)Alx HEAs. The comprehensive analysis of corroded HEAs, including surface morphology, compositions and elemental distribution mapping, contributes to the understanding of the corrosion mechanisms and offers potential strategies for enhancing the corrosion behavior of HEAs.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 April 2024

Dongju Chen, Yupeng Zhao, Kun Sun, Ri Pan and Jinwei Fan

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus…

Abstract

Purpose

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus on the impact of graphene nano-lubricating oil hydrostatic bearing temperature rise at various speeds and eccentricities.

Design/methodology/approach

The thermal conductivity of graphene nano-lubricating oil was calculated by molecular dynamics method and based on the viscosity–temperature effect, the coupled heat transfer finite element model of hydrostatic bearing was established; temperature rise of pure lubricating oil and graphene nano-lubricating oil hydrostatic bearing were analysed at different speed and eccentricity based on computational fluid dynamics method.

Findings

With the increase of speed and eccentricity, the temperature rise of 0.2% graphene nano-lubricating oil bearings is lower than that of pure lubricating oil bearings; in addition with the increase of graphene mass fraction, the temperature rise of graphene nano-lubricating oil bearings is always higher than that of pure lubricating oil bearings, and the higher the speed, the more obvious the phenomenon.

Originality/value

The effects of graphene as a lubricant additive on the thermal conductivity of nano-lubricating oil and the variation of the temperature rise of graphene nano-lubricating oil bearings compared to pure lubricating oil bearings were analysed by combining micro and macro methods.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0388

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles…

Abstract

Purpose

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds.

Design/methodology/approach

This examination is conducted through finite element analysis. The mechanical properties of all die attach systems, including elastic and Anand creep parameters, are obtained from relevant literature and incorporated into the numerical analysis. Consequently, the bond stress-strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results indicate that silver-tin TLP bonds are prone to exhibiting higher inelastic strain energy densities, while sintered silver and copper interconnects tend to possess higher levels of plastic strains and deformations. This suggests a higher susceptibility to damage in these metallic die attachments. On the other hand, the more expensive gold-based solders exhibit lower inelastic strain energy densities and plastic strains, implying an improved fatigue performance compared to other bonding configurations.

Originality/value

The utilization of different metallic material systems as die attachments in power electronics necessitates a comprehensive understanding of their thermomechanical behavior. Therefore, the results of the present paper can be useful in the die attach material selection in power electronics.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 12 December 2023

Judith Fauth, Tanya Bloch and Lucio Soibelman

Building permitting is mostly a manual, labor intensive and time-consuming process. Initiatives for streamlining the process are not always helpful since they often fail to…

Abstract

Purpose

Building permitting is mostly a manual, labor intensive and time-consuming process. Initiatives for streamlining the process are not always helpful since they often fail to address the core problems within the process. A framework for modeling the permitting process can be useful to identify bottlenecks, core challenges and best practices. Hence, the authors aim to demonstrate and validate a previously suggested workflow for permit process modeling using the permitting process in Israel as a test case.

Design/methodology/approach

The authors implement qualitative expert interviews for data acquisition. The collected data are then processed for a qualitative data analysis. The results of the analysis are then validated using a focus group workshop in the field of building permits. In the test case the focus group consisted of Israeli experts.

Findings

The authors present a detailed overview of the as-is building permit process in Israel and the existing challenges. Through this test case, the authors found that the framework is applicable in different countries and that it can provide valuable insights into the core problems within the process. In addition, application of the same framework in different countries can provide comparable results that would allow the authors to identify best practices.

Originality/value

The major contribution of this work is the development and validation of a framework for building permitting process modeling which can be used to identify existing challenges and bottlenecks in the process. Implementing a structured and unified approach provides an opportunity to easily compare processes in different countries to identify best practices.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Supen Kumar Sah and Anup Ghosh

The purpose of this study is to investigate the bending analysis of metal (Ti-6Al-4V)-ceramic (ZrO2) functionally graded material (FGM) sandwich plate with material property…

Abstract

Purpose

The purpose of this study is to investigate the bending analysis of metal (Ti-6Al-4V)-ceramic (ZrO2) functionally graded material (FGM) sandwich plate with material property gradation along length and thickness direction under thermo-mechanical loading using inverse trigonometric shear deformation theory (ITSDT). FGM sandwich plate with a ceramic core and continuous variation of material properties has been modelled using Voigt’s micro-mechanical model following the power law distribution method. The impact of bi-directional gradation of material properties over the bending response of FGM plate under thermo-mechanical loading has been investigated in this work.

Design/methodology/approach

In this study, gradation of material properties for FGM plates is considered along length and thickness directions using Voigt’s micromechanical model following the power law distribution method. This type of FGM is called bi-directional FGMs (BDFGM). Mechanical and thermal properties of BDFGM sandwich plates are considered temperature-dependent in the present study. ITSDT is a non-polynomial shear deformation theory which requires a smaller number of field variables for modelling of displacement function in comparison to poly-nominal shear deformation theories which lead to a reduction in the complexity of the problem. In the present study, ITSDT has been utilized to obtain the governing equations for thermo-mechanical bending of simply supported uni-directional FGM (UDFGM) and BDFGM sandwich plates. Analytical solution for bending analysis of rectangular UDFGM and BDFGM sandwich plates has been carried out using Hamilton’s principle.

Findings

The bending response of the BDFGM sandwich plate under thermo-mechanical loading has been analysed and discussed. The present study shows that centre deflection, normal stress and shear stress are significantly influenced by temperature-dependent material properties, bi-directional gradation exponents along length and thickness directions, geometrical parameters, sandwich plate layer thickness, etc. The present investigation also reveals that bi-directional FGM sandwich plates can be designed to obtain thermo-mechanical bending response with an appropriate selection of gradation exponents along length and thickness direction. Non-dimensional centre deflection of BDFGM sandwich plates decreases with increasing gradation exponents in length and thickness directions. However, the non-dimensional centre deflection of BDFGM sandwich plates increases with increasing temperature differences.

Originality/value

For the first time, the FGM sandwich plate with the bi-directional gradation of material properties has been considered to investigate the bending response under thermo-mechanical loading. In the literature, various polynomial shear deformation theories like first-order shear deformation theory (FSDT), third-order shear deformation theory (TSDT) and higher-order shear deformation theory (HSDT) have been utilized to obtain the governing equation for bending response under thermo-mechanical loading; however, non-polynomial shear deformation theory like ITSDT has been used for the first time to obtain the governing equation to investigate the bending response of BDFGM. The impact of bi-directional gradation and temperature-dependent material properties over centre deflection, normal stress and shear stress has been analysed and discussed.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 May 2024

Ting Li, Junmiao Wu, Junhai Wang, Yunwu Yu, Xinran Li, Xiaoyi Wei and Lixiu Zhang

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Abstract

Purpose

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Design/methodology/approach

The oil absorption and discharge tests were conducted to evaluate the oil content properties of the materials, while the mechanical properties were analyzed through cross-sectional morphology examination. Investigation into the tribological behavior and wear mechanisms encompassed characterization and analysis of wear trace morphology in PPI-based materials. Consequently, the influence of varied graphene nanoplatelets (GN) concentrations on the oil content, mechanical and tribological properties of PPI-based materials was elucidated.

Findings

The composites exhibit excellent oil-containing properties due to the increased porosity of PPI-GN composites. The robust formation of covalent bonds between GN and PPI amplifies the adhesive potency of the PPI-GN composites, thereby inducing a substantial enhancement in impact strength. Notably, the PPI-GN composites showed enhanced lubrication properties compared to PPI, which was particularly evident at a GN content of 0.5 Wt.%, as evidenced by the minimization of the average coefficient of friction and the width of the abrasion marks.

Practical implications

This paper includes implications for elucidating the wear mechanism of the polyimide composites under frictional wear conditions and then to guide the optimization of oil content and tribological properties of polyimide bearing cage materials.

Originality/value

In this paper, homogeneously dispersed PPI-GN composites were effectively synthesized by introducing GN into a polyimide matrix through in situ polymerization, and the lubrication mechanism of the PPI composites was compared with that of the PPI-GN composites to illustrate the composites’ superiority.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0415

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 October 2023

Doron Goldbarsht

The rise of cryptocurrencies and other digital assets has triggered concerns about regulation and security. Governments and regulatory bodies are challenged to create frameworks…

Abstract

Purpose

The rise of cryptocurrencies and other digital assets has triggered concerns about regulation and security. Governments and regulatory bodies are challenged to create frameworks that protect consumers, combat money laundering and address risks linked to digital assets. Conventional approaches to confiscation and anti-money laundering are deemed insufficient in this evolving landscape. The absence of a central authority and the use of encryption hinder the identification of asset owners and the tracking of illicit activities. Moreover, the international and cross-border nature of digital assets complicates matters, demanding global coordination. The purpose of this study is to highlight that the effective combat of money laundering, legislative action, innovative investigative techniques and public–private partnerships are crucial.

Design/methodology/approach

The focal point of this paper is Australia’s approach to law enforcement in the realm of digital assets. It underscores the pivotal role of robust confiscation mechanisms in disrupting criminal networks operating through digital means. The paper firmly asserts that staying ahead of the curve and maintaining an agile stance is paramount. Criminals are quick to embrace emerging technologies, necessitating proactive measures from policymakers and law enforcement agencies.

Findings

It is argued that an agile and comprehensive approach is vital in countering money laundering, as criminals adapt to new technologies. Policymakers and law enforcement agencies must remain proactively ahead of these developments to efficiently identify, trace and seize digital assets involved in illicit activities, thereby safeguarding the integrity of the global financial system.

Originality/value

This paper provides a distinctive perspective by examining Australia’s legal anti-money laundering and counterterrorism financing framework, along with its law enforcement strategies within the realm of the digital asset landscape. While there is a plethora of literature on both asset confiscation and digital assets, there is a noticeable absence of exploration into their interplay, especially within the Australian context.

Details

Journal of Money Laundering Control, vol. 27 no. 3
Type: Research Article
ISSN: 1368-5201

Keywords

1 – 10 of 528