Search results

1 – 10 of over 2000
Article
Publication date: 7 March 2023

Nazmiye Tufan Tolmaç and Özlenen Erdem İşmal

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Abstract

Purpose

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Design/methodology/approach

Experiments were conducted using different types of materials in FDM 3D printers until the sufficient flexibility was achieved to create textile-like structures. During the research, properties of polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) were observed. Geometrical patterns were printed and each of them gave a different result depending on the pattern. Based on the information obtained from the experiments, a garment collection with four total looks was designed inspired by Vivaldi’s “Four Seasons”.

Findings

Among the materials used, TPU, a flexible filament, yielded the best results. Because of the rigid properties of PLA and ABS, chain-like structures were printed to create relatively flexible surfaces, but the results were still not successful enough to create a clothing material. Therefore, TPU was preferred for the garment material selection.

Originality/value

In this study, combinations of 3D printed flexible structures and different types of fabrics were used to create a garment collection. It was concluded that, with the right material selection, 3D printing can be used as an alternative method to create a new aesthetic language in fashion design.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 August 2024

Salma Ahmed, Lotfi Romdhane, Sameh Monir El-Sayegh and Solair Manjikian

The purpose of this study is to identify and assess new risks in construction projects that use 3D printing.

Abstract

Purpose

The purpose of this study is to identify and assess new risks in construction projects that use 3D printing.

Design/methodology/approach

A mixed approach of both qualitative and quantitative methods was used. Literature review was conducted to extract 30 risks of 3D printing in construction. A survey was then developed to assess the probability and impact of these risks. In total, 37 respondents, who have experience and/or knowledge of 3D printing, completed the survey. The risk priority was calculated using a fuzzy logic approach. The main benefit of the proposed model is being able to use numerical and linguistic data in the risk assessment model.

Findings

The results show that the main risks, in terms of priority, are lack of codes and regulations for 3D printing in construction, delay in government approvals, shortage in labour skilled in 3D printed construction, lack of knowledge and information of 3D printed design concepts and changes in 3D construction codes and regulations.

Originality/value

This paper fills an identified gap in the literature related to 3D printing in construction and provides insights into the key risks affecting this disruptive technology.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 16 September 2024

Émerson dos Santos Passari, Carlos Henrique Lauermann, André J. Souza, Fabio Pinto Silva and Rodrigo Rodrigues de Barros

The rapid growth of 3D printing has transformed the cost-effective production of prototypes and functional items, primarily using extrusion technology with thermoplastics. This…

Abstract

Purpose

The rapid growth of 3D printing has transformed the cost-effective production of prototypes and functional items, primarily using extrusion technology with thermoplastics. This study aims to focus on optimizing mechanical properties, precisely highlighting the crucial role of mechanical compressive strength in ensuring the functionality and durability of 3D-printed components, especially in industrial and engineering applications.

Design/methodology/approach

Using the Box−Behnken experimental design, the research investigated the influence of layer thickness, wall perimeter and infill level on mechanical resistance through compression. Parameters such as maximum force, printing time and mass utilization are considered for assessing and enhancing mechanical properties.

Findings

The layer thickness was identified as the most influential parameter over the compression time, followed by the degree of infill. The number of surface layers significantly influences both maximum strength and total mass. Optimization strategies suggest reducing infill percentage while maintaining moderate to high values for surface layers and layer thickness, enabling the production of lightweight components with adequate mechanical strength and reduced printing time. Experimental validation confirms the effectiveness of these strategies, with generated regression equations serving as a valuable predictive tool for similar parameters.

Practical implications

This research offers valuable insights for industries using 3D printing in creating prototypes and functional parts. By identifying optimal parameters such as layer thickness, surface layers and infill levels, the study helps manufacturers achieve stronger, lighter and more cost-efficient components. For industrial and engineering applications, adopting the outlined optimization strategies can result in components with enhanced mechanical strength and durability, while also reducing material costs and printing times. Practitioners can use the developed regression equations as predictive tools to fine-tune their production processes and achieve desired mechanical properties more effectively.

Originality/value

This research contributes to the ongoing evolution of additive manufacturing, providing insights into optimizing structural rigidity through polylactic acid (PLA) selection, Box−Behnken design and overall process optimization. These findings advance the understanding of fused deposition modeling (FDM) technology and offer practical implications for more efficient and economical 3D printing processes in industrial and engineering applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 February 2024

Gerasimos Rompotis

I seek to identify whether cash flow management can affect the performance and risk of the Greek listed companies.

Abstract

Purpose

I seek to identify whether cash flow management can affect the performance and risk of the Greek listed companies.

Design/methodology/approach

This study examines the relationship of cash flow management with performance and risk, using a sample of 80 non-financial companies listed in the Athens Exchange. The study covers the period 2018–2022, and panel data analysis is applied. Both financial performance and stock return are taken into consideration, while risk concerns the volatility of the companies’ share prices. The various explanatory variables used include the net cash flow, free cash flow, cash conversion cycle days, cash flow from operating activities, cash flow from investing activities, cash flow from financing activities, inventory days, customer days and supplier days.

Findings

The empirical results provide evidence of a positive relationship between financial performance and net cash flow and free cash flow. In addition, operating cash flow is positively related to financial performance. The opposite is the case for investing and financing cash flow. Finally, some evidence of a negative relationship between financial performance and inventory and customer days is provided too. On the other hand, stock return and risk are not related to the cash flow management variables at all.

Originality/value

To the best of my knowledge, this is one of the few studies to examine the relationship of cash flow management with performance and risk, using data from the Greek stock market. The results can form an effective selection tool for investors seeking Greek companies with the highest financial performance potential, which may reward them with higher dividends.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 26 August 2024

Wasan Al-Masa’fah, Ismail Abushaikha and Omar M. Bwaliez

This study aims to evaluate the enhancement in prosthetic supply chain capabilities resulting from the implementation of additive manufacturing (AM) technologies. The study…

Abstract

Purpose

This study aims to evaluate the enhancement in prosthetic supply chain capabilities resulting from the implementation of additive manufacturing (AM) technologies. The study presents an emerging model outlining the key areas that undergo changes when integrating 3D printing technologies into the prosthetic supply chain.

Design/methodology/approach

Employing a qualitative approach, data were collected through field observations and 31 in-depth interviews conducted within various Jordanian organizations associated with the prosthetic industry and 3D printing technologies.

Findings

The findings suggest that the adoption of 3D printing technologies improves the prosthetic supply chain’s capabilities in terms of customization, responsiveness, innovation, environmental sustainability, cost minimization and patient empowerment. The study sheds light on the specific areas affected in the prosthetic supply chain following the adoption of 3D printing technologies, emphasizing the overall improvement in supply chain capabilities within the prosthetic industry.

Practical implications

This study provides recommendations for governmental bodies and prosthetic organizations to maximize the benefits derived from the use of 3D printing technologies.

Originality/value

This study contributes as the first of its kind in exploring the impact of 3D printing technology adoption in the Jordanian prosthetic industry, elucidating the effects on the supply chain and identifying challenges for decision-makers in an emerging market context.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 23 July 2024

Ilayda Zeynep Niyet, Seden Dogan and Cihan Cobanoglu

This paper aims to address the critical labor shortage in the food industry by exploring the potential of 3D food printing technology as a strategic solution. The study…

Abstract

Purpose

This paper aims to address the critical labor shortage in the food industry by exploring the potential of 3D food printing technology as a strategic solution. The study investigates how 3D food printing can enhance productivity, reduce labor costs, and offer innovative applications in various sectors of the food industry.

Design/methodology/approach

The research employs a comprehensive review of existing literature and case studies to analyze the current state of labor scarcity in the food industry and the technological advancements in 3D food printing. The paper also assesses the technical, operational, regulatory, and ethical challenges of 3D food printing and provides strategic recommendations for stakeholders.

Findings

3D food printing technology presents a viable solution by automating labor-intensive tasks, enhancing labor efficiency, and enabling customized food production. The technology’s potential benefits include improved productivity, reduced operational costs, and the ability to meet personalized nutritional needs. However, the adoption of 3D food printing faces challenges such as high initial costs, maintenance requirements, and scalability issues. Additionally, regulatory and consumer acceptance hurdles need to be addressed.

Practical implications

Policymakers are encouraged to support the development and adoption of 3D food printing through funding and clear regulatory frameworks. Business leaders should consider strategic investments in 3D printing technology and training programs to harness its benefits. Technology developers must focus on advancing the capabilities and user-friendliness of 3D food printers. Addressing these aspects can help the food industry overcome labor scarcity and achieve long-term sustainability and efficiency.

Originality/value

This paper provides a comprehensive analysis of 3D food printing technology as a strategic response to labor scarcity in the food industry. It contributes to the existing body of knowledge by highlighting the potential of 3D food printing to revolutionize food production and offering practical recommendations for its adoption and integration.

Details

Worldwide Hospitality and Tourism Themes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4217

Keywords

Article
Publication date: 11 August 2023

Ruifan Chang and Maxwell Fordjour Antwi-Afari

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the…

Abstract

Purpose

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the application of 3D printing technology at various stages of the project lifecycle has been explored, few studies have identified the relative importance of critical success factors (CSFs) for implementing 3D printing technology in construction projects. To address this research gap, this study aims to explore the academics (i.e. researchers) and construction practitioners’ perspectives on CSFs for implementing 3D printing technology in construction projects.

Design/methodology/approach

To do this, a questionnaire was administered to participants (i.e. academics and construction practitioners) with knowledge and expertise in 3D printing technology in construction projects. The collected data were analysed using mean score ranking, normalization and rank agreement analysis to identify CSFs and determine the consistency of the ranking of CSFs between academics and construction practitioners. In addition, exploratory factor analysis was used to identify the relationships and underlying constructs of the measured CSFs.

Findings

Through a rank agreement analysis of the collected data, 11 CSFs for implementing 3D printing technology were retrieved (i.e. 17% agreement), indicating a diverse agreement in the ranking of the CSFs between academics and construction practitioners. In addition, the results show three key components of CSFs including “production demand enabling CSFs”, “optimize the construction process enabling CSFs” and “optimized design enabling CSFs”.

Originality/value

This study highlights the feasibility of implementing the identified CSFs for 3D printing technology in construction projects, which not only serves as a reference for other researchers but also increases construction practitioners’ awareness of the practical benefits of implementing 3D printing technology in construction projects. Specifically, it would optimize the construction lifecycle processes, enhance digital transformation and promote sustainable construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 9 July 2024

Martina Glogar and Sanja Ercegovic Razic

In the field of research on the application of digital printing to textile materials, there are still many research issues that arise from the very demanding interaction of…

Abstract

Purpose

In the field of research on the application of digital printing to textile materials, there are still many research issues that arise from the very demanding interaction of digital printing technology and the complex, heterogeneous surface system of textile materials. This is precisely why the area of pre-treatment of textile materials is in need of research, and the purpose of this research was to establish the level of influence of physical and chemical activation of the textile surface with plasma and the possibility of improving the quality of the print and colour reproduction.

Design/methodology/approach

The paper deals with the possibility of applying argon and oxygen cold low-pressure plasma in the processing of cellulose knitted fabrics, with the aim of improving the quality of the print and colour reproduction in digital pigment inkjet printing. The selected raw material samples were 100% raw cotton and lyocell. After plasma treatment, the samples were printed by digital ink jet printing with water-based pigment printing ink. An analysis of the micromorphological structure of untreated and plasma-treated samples before and after printing was carried out, and a comparative analysis of the colour of the printed elements was carried out depending on the pre-treatment.

Findings

The conducted research showed a positive influence of plasma pre-treatment on the coverage of the fibre surface with pigments, the uniformity of pigment distribution along the fibre surface and the uniformity of the distribution of the polymeric binder layer. This has a positive effect on colour reproduction. Also, certain improvements in colourfastness to washing were obtained.

Research limitations/implications

Considering the complexity of the topic, although exhaustive, this research is not sufficient in itself, but opens up new questions and gives ideas for further research that must be carried out in this area.

Practical implications

Also, this kind of research contributes to the possibility of adopting the idea of industrial plasma transformation, as an ecologically sustainable functionalisation of textiles, which has not yet been established.

Originality/value

This research is certainly a contribution to the establishment of acceptable textile pre-treatment methods in the field of digital printing, as one of the key quality factors in digital textile printing (DTP). Considering the still large number of obstacles and unanswered questions encountered in the field of digital printing on textiles, this kind of research is a strong contribution to the understanding of the fundamental mechanisms of the complex interaction between printing ink and textile.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 September 2024

Zhuoyang Xin, Guanqi Zhu, Yun Chung Hsueh and Dan Luo

Additive lamination manufacturing (ALM), as a novel additive manufacturing technology, builds up the geometry via the lamination of fiber-reinforced polymer (FRP) fabric…

Abstract

Purpose

Additive lamination manufacturing (ALM), as a novel additive manufacturing technology, builds up the geometry via the lamination of fiber-reinforced polymer (FRP) fabric laterally, rendering it suitable for fabricating large-scale Stay-in-Place concrete formwork. This paper aims to investigate the control parameters and structure performance of ALM and assess its application for the fabrication of large-scale concrete formwork.

Design/methodology/approach

Based on previous feasibility studies, this research systematically investigates the control and material parameters that influence horizontal and vertical extrusion speeds, as well as the overall quality of ALM. Once the system parameters are established, a series of prototypes are fabricated and tested to validate the tensile strength of the formwork and its reinforcement capabilities. In addition, this study assesses the potential geometric freedom and implementation constraints of ALM.

Findings

This research identifies the essential control parameters for path planning in ALM and examines their impact on fabrication. In addition, this paper evaluates ALM’s strengths and limitations in producing concrete formwork for large-scale concrete structures, comparing these to industry benchmarks.

Originality/value

A critical challenge in additive manufacturing lies in its scalability and compatibility with existing construction processes. In comparison to concrete, FRP offers advantages such as being lighter, easier to handle and providing surface protection and reinforcement. These qualities make FRP superior for formwork and compatible with existing building standards. Despite its advantages and potential, the current path planning and control model in 3D printing do not apply to ALM due to its novel build-up process. Also, the performance of fabricated parts as part of integrated large-scale structures is yet to be studied.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 23 August 2024

Mauricio Soto Rubio, Muhammad Fauzan Mirza, Mustafa Kagdi and Ahmad Ali Bisati

This research explores the role of concrete 3D printing (C3DP) in the development of culturally appropriate housing in Indigenous Reserves in Canada through the design, building…

Abstract

Purpose

This research explores the role of concrete 3D printing (C3DP) in the development of culturally appropriate housing in Indigenous Reserves in Canada through the design, building and evaluation of the Star Lodge project located in the Siksika Nation of Alberta, Canada. The project aims to assess the potential of C3DP in addressing the escalating housing demands in Indigenous communities in Canada.

Design/methodology/approach

The research involved a collaborative and multidisciplinary approach, engaging Blackfoot Elders, Knowledge Keepers from the Siksika Nation, Siksika Housing and Nidus3D. Central to this was the design, build and documentation of the Star Lodge project to analyse the advantages and challenges, guided by weekly meetings and site visits.

Findings

The project harnessed C3DP to streamline construction, enhance durability, reduce maintenance costs and enhance the energy performance of the homes. Notable time savings were achieved compared to conventional construction methods. Challenges included developing strategies to overcome extreme cold weather conditions, achieving a consistent concrete mix and integrating conventional construction elements such as drywall construction in interiors. The project served as a platform for collaboration and community participation, shaping the design and construction process while raising awareness of innovative construction techniques in the community.

Originality/value

This study provides an evidence-based framework for the evaluation of C3DP technology by analysing the Star Lodge Project, the first C3DP project in Alberta and the largest of its kind in Canada. By addressing housing challenges in Indigenous communities, the research holds broader implications for sustainable development and Indigenous empowerment across Canada.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

1 – 10 of over 2000