Search results

1 – 10 of 58
Article
Publication date: 12 January 2024

Gobikannan Tamilmani, Venkhatesan D., Santhosh P., Tamilselvan M., Suryappa Jayappa Pawar and Amin Hirenbhai Navinbhai

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles…

73

Abstract

Purpose

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles (NPs), which block the UV rays by their photocatalytic activity in the sunlight on the cotton fabric.

Design/methodology/approach

The TiO2 NPs mixed with photochromic printing paste are used for coating on cotton fabric and further curing is performed in a one-step process. The photochromic pigment printed fabric impregnated in a liquid solution is processed in a two-step process with two variables such as 1% TiO2 and 2% TiO2. The characterization of samples was done with a UV transmittance analyser, surface contact angle, antimicrobial test and fabric physical properties.

Findings

The UV protection of TiO2-treated photochromic printed fabric was high and gives the ultraviolet protection factor rating of 2,000 which denotes almost maximum blocking of UV rays. The antibacterial activity of the one-step samples shows the highest 36 mm zone of inhibition (ZOI) against S. aureus (gram-positive) and 32 mm ZOI against E. coli (gram-negative) bacteria. The one-step sample shows the highest static water contact angle of 118.6° representing more hydrophobicity, whereas the untreated fabric is fully wetted (0.4°). In two-step processes, as the concentration of TiO2 increased, the antibacterial activity, UV blocking and hydrophobicity became better.

Originality/value

This work achieves the multifunctional finishes by using photochromic microcapsules and NPs in a single process as a first attempt. The results inferred that one-step sample has achieved higher values in most of the tests conducted when compared to all other sample.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 14 March 2024

Chongjun Wu, Yutian Chen, Xinyi Wei, Junhao Xu and Dongliu Li

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is…

Abstract

Purpose

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is mainly focused on analyzing the forming mechanism of equipment and factors affecting the forming quality and accuracy, investigating the influence of forming process parameters on the printing quality and optimization of the printing quality. This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Design/methodology/approach

The µ-SLA process is optimized based on the variable cross-section micro-cone structure printing. Multi-index analysis method was used to analyze the influence of process parameters. The process parameter influencing order is determined and validated with flawless micro array structure.

Findings

After the optimization analysis of the top diameter size, the bottom diameter size and the overall height, the influence order of the printing process parameters on the quality of the micro-cone forming is: exposure time (B), print layer thickness (A) and number of vibrations (C). The optimal scheme is A1B3C1, that is, the layer thickness of 5 µm, the exposure time of 3000 ms and the vibration of 64x. At this time, the cone structure with the bottom diameter of 50 µm and the cone angle of 5° could obtain a better surface structure.

Originality/value

This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 13 June 2023

M. Hassanein, M. Abd El Rahm, H. M. Abd El Bary and H. Abd El-Wahab

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Abstract

Purpose

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Design/methodology/approach

Different dispersing agents through the reaction of glycerol monooleate and toluene diisocyanate were prepared and then performed by using three different polyols (succinic anhydride-modified polyethylene glycol PEG 600, EO/PO Polyether Monoamine and p-chloro aniline Polyether Monoamine), to obtain three different dispersing agents for water-based titanium dioxide inkjet inks. The prepared dispersants were characterized using FTIR to monitor the reaction progress. Then the prepared dispersants were formulated in titanium dioxide inkjet inks formulation and characterized by particle size, dynamic surface tension, transmission electron microscopy, viscosity and zeta potential against commercial dispersants. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to washing and crock fastness.

Findings

The obtained results showed that p-chloro aniline Polyether Monoamine (J) and succinic anhydride modified polyethylene glycol PEG 600 (H) dispersants provided optimum performance as compared to commercial standards especially, particle size distribution data while EO/PO Polyether Monoamine based on dispersant was against and then failed with the wettability and dispersion stability tests.

Practical implications

These ink formulations could be used for printing on cotton fabric by DTG technique of printing and can be used for other types of fabrics.

Originality/value

The newly prepared ink formulation for digital textile printing based on synthesized polyurethane prepolymers has the potential to be promising in this type of printing inks, to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 2024

Umesh Mahajan and S.T. Mhaske

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl…

Abstract

Purpose

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.

Design/methodology/approach

Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.

Findings

The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.

Originality/value

This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 April 2024

Saadet Güler, Ahmet Yavaş, Berk Özler and Ahmet Çagri Kilinç

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed…

Abstract

Purpose

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed photocatalyst-nano composite lattice structure. Digital light processing (DLP) 3D printing of photocatalyst composites was performed using photosensitive resin mixed with 0.5% Wt. of TiO2 powder and varying amounts (0.025% Wt. to 0.2% Wt.) of graphene nanoplatelet powder. The photocatalytic efficiency of DLP 3D-printed photocatalyst TiO2 composite was investigated, and the effects of nano graphite powder incorporation on the photocatalytic activity, thermal and mechanical properties were investigated.

Design/methodology/approach

Methods involve 3D computer-aided design modeling, printing parameters and comprehensive characterization techniques such as structural equation modeling, X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared (FTIR) and mechanical testing.

Findings

Results highlight successful dispersion and characteristics of TiO2 and graphene nanoplatelet (GNP) powders, intricate designs of 3D-printed lattice structures, and the influence of GNPs on thermal behavior and mechanical properties.

Originality/value

The study suggests applicability in wastewater treatment and environmental remediation, showcasing the adaptability of 3 D printing in designing effective photocatalysts. Future research should focus on practical applications and the long-term durability of these 3D-printed composites.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

22

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Mohammad Vahid Ehteshamfar, Amir Kiadarbandsari, Ali Ataee, Katayoun Ghozati and Mohammad Ali Bagherkhani

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However…

Abstract

Purpose

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However, the staircase effect poses a challenge to the application of invisible orthodontics in the dental industry. The purpose of this study is to implement chemical postprocessing technique by using isopropyl alcohol as a solvent to overcome this challenge.

Design/methodology/approach

Fifteen experiments were conducted using a D-optimal design to investigate the effect of different concentrations and postprocessing times on the surface roughness, material removal rate (MRR), hardness and cost of SLA dental parts required for creating a clear customized aligner, and a container was constructed for chemical treatment of these parts made from photocurable resin.

Findings

The study revealed that the chemical postprocessing technique can significantly improve the surface roughness of dental SLA parts, but improper selection of concentration and time can lead to poor surface roughness. The optimal surface roughness was achieved with a concentration of 90 and a time of 37.5. Moreover, the dental part with the lowest concentration and time (60% and 15 min, respectively) had the lowest MRR and the highest hardness. The part with the highest concentration and time required the greatest budget allocation. Finally, the results of the multiobjective optimization analysis aligned with the experimental data.

Originality/value

This paper sheds light on a previously underestimated aspect, which is the pivotal role of chemical postprocessing in mitigating the adverse impact of stair case effect. This nuanced perspective contributes to the broader discourse on AM methodologies, establishing a novel pathway for advancing the capabilities of SLA in dental application.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 9 May 2023

Fuping Bian and Shudong Lin

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy…

Abstract

Purpose

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy monomer. In this paper, [4-Methylphenyl-(4–(2-methylpropyl) phenyl)]iodonium as photoinitiator was added into epoxy silicone resin by ultraviolet (UV)-cured polymerization to investigate the effects on coatings performance owing to the existence of the different chain length of open-chain epoxy monomer.

Design/methodology/approach

A simple hydrosilylation reaction was used to synthesize epoxy-based silicone prepolymers by using hydrogen-terminated polydimethylsiloxane, 1,2-epoxy-5-hexene, 1,2-epoxy-7-octene and 1,2-epoxy-9-decene as precursors.

Findings

The results revealed that the glass transition temperatures (Tg) and hydrophobicity increased with the chain length of open-chain epoxy monomer in the UV curable epoxy-based silicone coatings, and these films had excellent heat resistance, hydrophobicity, antigraffiti and ink removal properties.

Research limitations/implications

The cationic photocuring systems are not susceptible to the effect of oxygen inhibition. However, the limitation of cationic light curing process is that it requires a long curing time.

Originality/value

The coatings prepared via the UV curing approach can provide superior antismudge effects, and thus they are promising candidates for use in various industries, especially in fields such as antismudge coatings and antigraffiti coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 September 2023

Xingbing Yang, Xinye Wang, Shuang Huang, Xin Liu, Xiang Huang and Ting Lei

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Abstract

Purpose

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Design/methodology/approach

This research first examined the influence of solid formaldehyde content on the hydroxymethylation phase. Subsequently, the effects of butanol content, etherification time and hydrochloric acid content on the formation of benzo-amino resin during the etherification stage were studied in detail. In addition, the reaction process was further analyzed through interval sampling withdrawing during the hydroxymethylation and etherification stages. Finally, the synthesized benzo-amino resins were used in the production of high solid content polyester and acrylic coatings and the properties of that were also evaluated.

Findings

Based on the experimental findings, the authors have successfully determined the optimal process conditions for the one-step-two-stage method in this study. The hydroxymethylation stage demonstrated the most favorable outcomes at a reaction temperature of 60°C and a pH of 8.5. Similarly, for the etherification stage, the optimal conditions were achieved at a temperature of 45°C and a pH of 4.5. Furthermore, the investigation revealed that a ratio of benzoguanamine to solid formaldehyde to n-butanol, specifically at 1:5.2:15, produced the best results. The performance of the resulting etherified benzo-amino resin was thoroughly evaluated in high solid content coatings, and it exhibited promising characteristics. Notably, there was a significant enhancement in the water resistance, solvent resistance and glossiness of canned iron printing varnish coatings.

Originality/value

Amino resin, a versatile chemical compound widely used in various industries, presents challenges in terms of sustainability and operational efficiency when synthesized using conventional methods, primarily relying on a 37% formaldehyde solution. To address these challenges, the authors propose a novel approach in this study that combines the advantages of the solid formaldehyde with a two-stage catalytic one-step synthesis process. The primary objective of this research is to minimize the environmental impact associated with amino resin synthesis, optimize resource utilization and enhance the economic feasibility for its industrial implementation. By adopting this alternative approach, the authors aim to contribute toward a more sustainable and efficient production of amino resin.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 12 months (58)

Content type

Earlycite article (58)
1 – 10 of 58