Search results

1 – 10 of 260
Open Access
Article
Publication date: 13 June 2022

Julie Krogh Agergaard, Kristoffer Vandrup Sigsgaard, Niels Henrik Mortensen, Jingrui Ge and Kasper Barslund Hansen

The purpose of this paper is to investigate the impact of early-stage maintenance clustering. Few researchers have previously studied early-stage maintenance clustering…

Abstract

Purpose

The purpose of this paper is to investigate the impact of early-stage maintenance clustering. Few researchers have previously studied early-stage maintenance clustering. Experience from product and service development has shown that early stages are critical to the development process, as most decisions are made during these stages. Similarly, most maintenance decisions are made during the early stages of maintenance development. Developing maintenance for clustering is expected to increase the potential of clustering.

Design/methodology/approach

A literature study and three case studies using the same data set were performed. The case studies simulate three stages of maintenance development by clustering based on the changes available at each given stage.

Findings

The study indicates an increased impact of maintenance clustering when clustering already in the first maintenance development stage. By performing clustering during the identification phase, 4.6% of the planned work hours can be saved. When clustering is done in the planning phase, 2.7% of the planned work hours can be saved. When planning is done in the scheduling phase, 2.4% of the planned work hours can be saved. The major difference in potential from the identification to the scheduling phase came from avoiding duplicate, unnecessary and erroneous work.

Originality/value

The findings from this study indicate a need for more studies on early-stage maintenance clustering, as few others have studied this.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 16 January 2023

Intekhab Alam, Ahteshamul Haq, Lalit Kumar Sharma, Sumit Sharma and Ritika

In this paper, the authors design accelerated life test and provide its application in the field of accelerated life test. The authors use maximum likelihood estimation method as…

67

Abstract

Purpose

In this paper, the authors design accelerated life test and provide its application in the field of accelerated life test. The authors use maximum likelihood estimation method as a parameter estimation method.

Design/methodology/approach

In this paper we design accelerated life test and provide its application in the field of accelerated life test. The authors use maximum likelihood estimation method as a parameter estimation method.

Findings

In this study, the authors design accelerated life test under Type-I censoring when the lifetime of test items follows PID and also provides its application in the field of warranty policy. The following conclusion is made on the basis of this study. (1) An inverse relationship is shown between the shape parameter with the expected total cost and expected cycle time, while the shape parameter directly relates to the expected cost rate (see Table 5). (2) A direct relationship is shown between the scale parameter with the expected total cost and expected time cycle, while the inverse relationship is shown with the expected cost rate (see Table 5). (3) An inverse relationship is shown between the replacement age and the expected cost rate, while there are direct relationships between expected total cost and expected time cycle (see Table 5).

Originality/value

This paper is neither published or neither accepted anywhere.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 December 2023

Ahmed M. Attia, Ahmad O. Alatwi, Ahmad Al Hanbali and Omar G. Alsawafy

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Abstract

Purpose

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Design/methodology/approach

A mixed-integer nonlinear programming (MINLP) model is developed to study the relation between production makespan, energy consumption, maintenance actions and footprint, i.e. service level and sustainability measures. The speed scaling technique is used to control energy consumption, the capping policy is used to control CO2 footprint and preventive maintenance (PM) is used to keep the machine working in healthy conditions.

Findings

It was found that ignoring maintenance activities increases the schedule makespan by more than 21.80%, the total maintenance time required to keep the machine healthy by up to 75.33% and the CO2 footprint by 15%.

Research limitations/implications

The proposed optimization model can simultaneously be used for maintenance planning, job scheduling and footprint minimization. Furthermore, it can be extended to consider other maintenance activities and production configurations, e.g. flow shop or job shop scheduling.

Practical implications

Maintenance planning, production scheduling and greenhouse gas (GHG) emissions are intertwined in the industry. The proposed model enhances the performance of the maintenance and production systems. Furthermore, it shows the value of conducting maintenance activities on the machine's availability and CO2 footprint.

Originality/value

This work contributes to the literature by combining maintenance planning, single-machine scheduling and environmental aspects in an integrated MINLP model. In addition, the model considers several practical features, such as machine-aging rate, speed scaling technique to control emissions, minimal repair (MR) and PM.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 14 June 2022

Swee Kuik, Joowon Ban, Li Diong and Xiaolie Qi

This paper proposes optimisation models to evaluate and examine the selling of extended warranty policies in terms of improved profits in producing/marketing remanufactured…

Abstract

Purpose

This paper proposes optimisation models to evaluate and examine the selling of extended warranty policies in terms of improved profits in producing/marketing remanufactured products. These models are numerically solved using a quadratic programming solution approach and implemented in the decision support system (DSS).

Design/methodology/approach

The purpose of this paper is to develop the optimisation models for a DSS and evaluate different warranty policies for buyers.

Findings

This study has demonstrated the flexibility and usefulness of a model-driven DSS for the quality and warranty management, which is applied to examine and evaluate different configurations (i.e. component reuse, rebuild and recycle) for remanufactured products and propose the selling of extended warranty policies for buyers.

Research limitations/implications

The developed model-driven DSS can assist manufacturers to select and increase the number of components, e.g. to be reused, rebuilt, and recycled for producing a remanufactured product and propose suitable warranty policies for buyers. However, this study focusses only on the evaluation of warranty policies for specific remanufactured products in a DSS, i.e. types of air compressors for production operations in manufacturing industry.

Originality/value

This study developed optimisation models to be used in a DSS for proposing the selling of extended warranty of a remanufactured product to improve customer satisfaction and maximise the gained profits for manufacturers.

Details

The TQM Journal, vol. 35 no. 6
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 24 November 2023

Iman Rastgar, Javad Rezaeian, Iraj Mahdavi and Parviz Fattahi

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize…

Abstract

Purpose

The purpose of this study is to propose a new mathematical model that integrates strategic decision-making with tactical-operational decision-making in order to optimize production and scheduling decisions.

Design/methodology/approach

This study presents a multi-objective optimization framework to make production planning, scheduling and maintenance decisions. An epsilon-constraint method is used to solve small instances of the model, while new hybrid optimization algorithms, including multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm, multi-objective harmony search and improved multi-objective harmony search (IMOHS) are developed to address the high complexity of large-scale problems.

Findings

The computational results demonstrate that the metaheuristic algorithms are effective in obtaining economic solutions within a reasonable computational time. In particular, the results show that the IMOHS algorithm is able to provide optimal Pareto solutions for the proposed model compared to the other three algorithms.

Originality/value

This study presents a new mathematical model that simultaneously determines green production planning and scheduling decisions by minimizing the sum of the total cost, makespan, lateness and energy consumption criteria. Integrating production and scheduling of a shop floor is critical for achieving optimal operational performance in production planning. To the best of the authors' knowledge, the integration of production planning and maintenance has not been adequately addressed.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 March 2023

Xiaonan Chen, Shiyong Chu, Guanglin Zhang, Xuanyou Chen, Jun Huang and Mingxu Yi

General aviation aircraft has a wide range of applications, and effective cost management is one of the hot spots in the research of general aviation manufacturers. The purpose of…

Abstract

Purpose

General aviation aircraft has a wide range of applications, and effective cost management is one of the hot spots in the research of general aviation manufacturers. The purpose of this paper is to build a flexible engineering method to predict maintenance cost of general aviation aircraft.

Design/methodology/approach

To establish a reasonable general aviation aircraft maintenance cost prediction model, it is necessary to analyze the influencing factors and extract the main components of maintenance cost. The maintenance cost is divided by engineering method, and the estimation model of each component cost is established. Then, the general aviation aircraft maintenance cost model is obtained. The results show that the relative error of this method is between 13% and 20%, which has a good estimation accuracy and can be effectively used to estimate the maintenance cost of general aviation aircraft.

Findings

The maintenance cost plays an important role in the life cycle cost of general aviation aircraft. Accurate cost prediction method is of great significance to the optimal design of general aviation aircraft. However, there are few prediction models suitable for maintenance cost, the proposed approach is meaningful and quite desirable.

Originality/value

To some extent, this method overcomes the shortage of the work on maintenance cost prediction for general aviation aircraft. The model established in this paper has certain generality, which can provide some reference for general aviation aircraft design and operation enterprises.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 4 November 2022

Bianca Caiazzo, Teresa Murino, Alberto Petrillo, Gianluca Piccirillo and Stefania Santini

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status…

2103

Abstract

Purpose

This work aims at proposing a novel Internet of Things (IoT)-based and cloud-assisted monitoring architecture for smart manufacturing systems able to evaluate their overall status and detect eventual anomalies occurring into the production. A novel artificial intelligence (AI) based technique, able to identify the specific anomalous event and the related risk classification for possible intervention, is hence proposed.

Design/methodology/approach

The proposed solution is a five-layer scalable and modular platform in Industry 5.0 perspective, where the crucial layer is the Cloud Cyber one. This embeds a novel anomaly detection solution, designed by leveraging control charts, autoencoders (AE) long short-term memory (LSTM) and Fuzzy Inference System (FIS). The proper combination of these methods allows, not only detecting the products defects, but also recognizing their causalities.

Findings

The proposed architecture, experimentally validated on a manufacturing system involved into the production of a solar thermal high-vacuum flat panel, provides to human operators information about anomalous events, where they occur, and crucial information about their risk levels.

Practical implications

Thanks to the abnormal risk panel; human operators and business managers are able, not only of remotely visualizing the real-time status of each production parameter, but also to properly face with the eventual anomalous events, only when necessary. This is especially relevant in an emergency situation, such as the COVID-19 pandemic.

Originality/value

The monitoring platform is one of the first attempts in leading modern manufacturing systems toward the Industry 5.0 concept. Indeed, it combines human strengths, IoT technology on machines, cloud-based solutions with AI and zero detect manufacturing strategies in a unified framework so to detect causalities in complex dynamic systems by enabling the possibility of products’ waste avoidance.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 4
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 23 November 2022

Ali Zavareh, Ehsan Fallahiarezoudar and Mohaddeseh Ahmadipourroudposht

This paper aims to optimize the maintenance scheduling of emergency rescue wagons in railway companies using a genetic algorithm (GA). It offers an integrated model for…

Abstract

Purpose

This paper aims to optimize the maintenance scheduling of emergency rescue wagons in railway companies using a genetic algorithm (GA). It offers an integrated model for simultaneously solving maintenance planning, preventive maintenance, prognostic information and resource planning from which optimal levels of the system performance in terms of cost and repair time could be determined.

Design/methodology/approach

This study initially evaluates the previous types of research in presenting the optimal model of the rescue train wagon for maintenance and repair planning and lists the identified criteria based on experts' opinions using fuzzy analytic hierarchy process (FAHP) and stepwise weight assessment ratio analysis (SWARA) techniques. Then, the final weight of the desired criteria is calculated. Later, the final decision matrix is evaluated by the experts. The final normal decision matrix is formed to select the optimal maintenance and repair planning plan based on the GA. Finally, two strategies including joint optimization strategy of preventive maintenance planning are compared with the independent preventive maintenance planning strategy.

Findings

According to the primary results, three primary parameters, including technology, human damage caused by negligence and the average failure rate, should be considered for launching the GA model. Based on the results of the second part; by comparing the preventive maintenance planning strategy independently, the joint optimization strategy reduces the total cost of production up to 8.25%. Comparison results show that the total cost of joint optimization production is less than independent preventive maintenance and repair planning. Moreover, the value of total process time in joint optimization strategy was reduced by 1.2% compared to independent preventive maintenance (PM) planning (from 137.90 to 136.20 h).

Originality/value

The novelty of this paper lies on the application of the GAs to develop an optimized PM scheduling to localize the maintenance planning for maximizing productivity, avoid train accidents, reduce costs and increase efficiency and capacity.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 August 2023

Argaw Gurmu and Pabasara Wijeratne Mudiyanselage

Most residential building owners often report problems associated with the plumbing systems. If identified at the early stages, plumbing-related defects can be easily repaired…

Abstract

Purpose

Most residential building owners often report problems associated with the plumbing systems. If identified at the early stages, plumbing-related defects can be easily repaired. However, if unnoticed for a long period of time, they could lead to major damages and incur a significant cost to repair. Despite the problems, studies investigating plumbing anomalies and their root causes in residential buildings are limited. This study aims to explore plumbing defects and their potential causes, diagnosis methods and repair techniques in residential buildings.

Design/methodology/approach

This research used data collected through an extensive survey of both academic and grey literature. Through the content analysis, plumbing defects and the associated causes have been identified and presented in tabular format.

Findings

The study investigated the anomalies and causes in the residential plumbing system under five key sub-systems: water supply system; sanitary plumbing system; roof drainage system; heating, ventilation, air conditioning and gas system; and swimming pool. Accordingly, some of the identified plumbing defects include leakages, corrosion, water penetration, slow drainage and cracks. Damaged pipes, faulty equipment and installations are some of the common causes of the anomalies. Visual inspection, hydrostatic pressure test, thermography, high-tech pipe cameras, infrared cameras, leak noise correlators and leak loggers are techniques used for diagnosing anomalies. Reactive, preventive, predictive and reliability-centred maintenance strategies are identified to control or prevent anomalies.

Originality/value

The findings of this research can be used as a useful tool or guideline for contractors, plumbers, facilities managers and building surveyors to identify and rectify plumbing system-related defects in residential buildings.

Details

Facilities , vol. 41 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 260