Search results

1 – 10 of 229
Article
Publication date: 16 June 2022

Vinícius Barbosa Henrique and Marlene Salete Uberti

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost…

40

Abstract

Purpose

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost of remotely piloted aircraft systems (RPAS), on-site visits are still used to complete the cadastral form. Thus, this work aims to employ techniques and methodologies for remote characterization of buildings for cadastral updating purposes, reducing the need to enter the parcels.

Design/methodology/approach

The research tools used were: RPAS and MMS (mobile mapping systems), making a three-dimensional model with RPAS data, and analyzing the results from these platforms. With the 3D model, it was possible to extract measurements and characteristics.

Findings

The analysis of the 3D model with the aerial photographs obtained better results in the characterization of the buildings and is the most indicated according to the study. There were difficulties in identifying some features, such as windows frames, and it was proposed to analyze the photographs without processing, to mitigate these identifications. The cadaster form was successfully completed using a combination of the techniques in this study.

Originality/value

This study brings a first proposal for the characterization of parcels for cadastral purposes, by remote sensing techniques, reducing the entry in the parcels for filling cadastral forms, with the evaluation of the proposal in the Brazilian case.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 11 April 2024

Youngsook Kim and Fatma Baytar

The research evaluated the feasibility of 3D dynamic fit utilizing female compression tops by comparatively analyzing the virtual and actual dynamic fit.

Abstract

Purpose

The research evaluated the feasibility of 3D dynamic fit utilizing female compression tops by comparatively analyzing the virtual and actual dynamic fit.

Design/methodology/approach

Six female participants were 3D body-scanned and photographed in compression tops in four types of athletic movements (pull-up, kettlebell swing, circle-crunch and sit-up). Fit measurements, waist cross-sectional areas, waist width, waist depth, numerical simulation of clothing pressure (kPa) and objective pressure measurements (kPa) were collected from 3D virtual animation, 3D fit scan data and actual photos with the four types of athletic motions. The data were comparatively investigated between virtual and actual dynamic fit.

Findings

The 3D-animated body was not reflected with human body deformation because only bone structure was changed while maintaining the constant forms of muscle and body surface in athletic movements. Due to this consistency of virtual dynamic fit, there were significant differences with the actual dynamic fit at the top length, shoulder width and waist cross-sectional areas. Also, the virtual dynamic pressure indicated significantly higher levels than the objective dynamic pressure while presenting no significant correlations at the front neckline, breast, lateral waist, upper back, back armhole and back waist.

Originality/value

This study is the first to verify multiple aspects of virtual dynamic fit using 3D digital technology. This study provided useful information about which aspects of the current virtual animation need to be improved to apply in the dynamic fit evaluation.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 March 2024

Cemalettin Akdoğan, Tolga Özer and Yüksel Oğuz

Nowadays, food problems are likely to arise because of the increasing global population and decreasing arable land. Therefore, it is necessary to increase the yield of…

Abstract

Purpose

Nowadays, food problems are likely to arise because of the increasing global population and decreasing arable land. Therefore, it is necessary to increase the yield of agricultural products. Pesticides can be used to improve agricultural land products. This study aims to make the spraying of cherry trees more effective and efficient with the designed artificial intelligence (AI)-based agricultural unmanned aerial vehicle (UAV).

Design/methodology/approach

Two approaches have been adopted for the AI-based detection of cherry trees: In approach 1, YOLOv5, YOLOv7 and YOLOv8 models are trained with 70, 100 and 150 epochs. In Approach 2, a new method is proposed to improve the performance metrics obtained in Approach 1. Gaussian, wavelet transform (WT) and Histogram Equalization (HE) preprocessing techniques were applied to the generated data set in Approach 2. The best-performing models in Approach 1 and Approach 2 were used in the real-time test application with the developed agricultural UAV.

Findings

In Approach 1, the best F1 score was 98% in 100 epochs with the YOLOv5s model. In Approach 2, the best F1 score and mAP values were obtained as 98.6% and 98.9% in 150 epochs, with the YOLOv5m model with an improvement of 0.6% in the F1 score. In real-time tests, the AI-based spraying drone system detected and sprayed cherry trees with an accuracy of 66% in Approach 1 and 77% in Approach 2. It was revealed that the use of pesticides could be reduced by 53% and the energy consumption of the spraying system by 47%.

Originality/value

An original data set was created by designing an agricultural drone to detect and spray cherry trees using AI. YOLOv5, YOLOv7 and YOLOv8 models were used to detect and classify cherry trees. The results of the performance metrics of the models are compared. In Approach 2, a method including HE, Gaussian and WT is proposed, and the performance metrics are improved. The effect of the proposed method in a real-time experimental application is thoroughly analyzed.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 20 February 2023

Zakaria Sakyoud, Abdessadek Aaroud and Khalid Akodadi

The main goal of this research work is the optimization of the purchasing business process in the Moroccan public sector in terms of transparency and budgetary optimization. The…

Abstract

Purpose

The main goal of this research work is the optimization of the purchasing business process in the Moroccan public sector in terms of transparency and budgetary optimization. The authors have worked on the public university as an implementation field.

Design/methodology/approach

The design of the research work followed the design science research (DSR) methodology for information systems. DSR is a research paradigm wherein a designer answers questions relevant to human problems through the creation of innovative artifacts, thereby contributing new knowledge to the body of scientific evidence. The authors have adopted a techno-functional approach. The technical part consists of the development of an intelligent recommendation system that supports the choice of optimal information technology (IT) equipment for decision-makers. This intelligent recommendation system relies on a set of functional and business concepts, namely the Moroccan normative laws and Control Objectives for Information and Related Technology's (COBIT) guidelines in information system governance.

Findings

The modeling of business processes in public universities is established using business process model and notation (BPMN) in accordance with official regulations. The set of BPMN models constitute a powerful repository not only for business process execution but also for further optimization. Governance generally aims to reduce budgetary wastes, and the authors' recommendation system demonstrates a technical and methodological approach enabling this feature. Implementation of artificial intelligence techniques can bring great value in terms of transparency and fluidity in purchasing business process execution.

Research limitations/implications

Business limitations: First, the proposed system was modeled to handle one type products, which are computer-related equipment. Hence, the authors intend to extend the model to other types of products in future works. Conversely, the system proposes optimal purchasing order and assumes that decision makers will rely on this optimal purchasing order to choose between offers. In fact, as a perspective, the authors plan to work on a complete automation of the workflow to also include vendor selection and offer validation. Technical limitations: Natural language processing (NLP) is a widely used sentiment analysis (SA) technique that enabled the authors to validate the proposed system. Even working on samples of datasets, the authors noticed NLP dependency on huge computing power. The authors intend to experiment with learning and knowledge-based SA and assess the' computing power consumption and accuracy of the analysis compared to NLP. Another technical limitation is related to the web scraping technique; in fact, the users' reviews are crucial for the authors' system. To guarantee timeliness and reliable reviews, the system has to look automatically in websites, which confront the authors with the limitations of the web scraping like the permanent changing of website structure and scraping restrictions.

Practical implications

The modeling of business processes in public universities is established using BPMN in accordance with official regulations. The set of BPMN models constitute a powerful repository not only for business process execution but also for further optimization. Governance generally aims to reduce budgetary wastes, and the authors' recommendation system demonstrates a technical and methodological approach enabling this feature.

Originality/value

The adopted techno-functional approach enabled the authors to bring information system governance from a highly abstract level to a practical implementation where the theoretical best practices and guidelines are transformed to a tangible application.

Details

Kybernetes, vol. 53 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Baoxu Tu, Yuanfei Zhang, Kang Min, Fenglei Ni and Minghe Jin

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction…

Abstract

Purpose

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction methods: handcrafted features, convolutional features and autoencoder features. Subsequently, these features were mapped to contact locations through a contact location regression network. Finally, the network performance was evaluated using spherical fittings of three different radii to further determine the optimal feature extraction method.

Design/methodology/approach

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image.

Findings

This research indicates that data collected by probes can be used for contact localization. Introducing a batch normalization layer after the feature extraction stage significantly enhances the model’s generalization performance. Through qualitative and quantitative analyses, the authors conclude that convolutional methods can more accurately estimate contact locations.

Originality/value

The paper provides both qualitative and quantitative analyses of the performance of three contact localization methods across different datasets. To address the challenge of obtaining accurate contact locations in quantitative analysis, an indirect measurement metric is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 July 2023

Godfred Matthew Yaw Owusu, Theodora Aba Abekah Koomson and George Nana Agyekum Donkor

This paper aims to review corporate fraud, as a concept, and the emerging research trends in corporate fraud research from 1957 to 2022 using bibliometric analysis techniques.

Abstract

Purpose

This paper aims to review corporate fraud, as a concept, and the emerging research trends in corporate fraud research from 1957 to 2022 using bibliometric analysis techniques.

Design/methodology/approach

A total of 7,750 publications from the Scopus database were first assessed using performance analysis to explore the descriptive nature of the bibliographic data, and subsequently, citation, co-citation, co-occurrence and bibliographic coupling analyses were conducted using the VOSviewer software.

Findings

The results indicate there has been increasing growth in fraud research over the years, especially since the global corporate scandals of 2008. Although fraud is a global issue, the results suggest that most extant studies originate from developed economies, with a high level of collaboration amongst scholars in these countries. In addition, the co-occurrence analysis indicates that research into corporate fraud has largely focused on its determinants and corruption. The determinants identified are further clustered in the paper as individual, organizational and national-level factors.

Practical implications

The findings should inform practitioners and policymakers of the state of knowledge on corporate fraud which could be useful in developing strategies and policies to mitigate its occurrence.

Social implications

The study points to the need for research collaborations among scholars in developing economies to increase investigations into the occurrences of fraud.

Originality/value

To the best of the authors’ knowledge, this is the first study to holistically assess the intellectual structure of corporate fraud studies from its inception and the trends over time.

Details

Journal of Financial Crime, vol. 31 no. 3
Type: Research Article
ISSN: 1359-0790

Keywords

Article
Publication date: 13 April 2023

Sadia Samar Ali, Shahbaz Khan, Nosheen Fatma, Cenap Ozel and Aftab Hussain

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this…

Abstract

Purpose

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this context, drones have the potential to change many industries by making operations more efficient, safer and more economic. Therefore, this study investigates the use of drones as the next step in smart/digital warehouse management to determine their socio-economic benefits.

Design/methodology/approach

The study identifies various enablers impacting drone applications to improve inventory management, intra-logistics, inspections and surveillance in smart warehouses through a literature review, a test of concordance and the fuzzy Delphi method. Further, the graph theory matrix approach (GTMA) method was applied to ranking the enablers of drone application in smart/digital warehouses. In the subsequent phase, researchers investigated the relation between the drone application's performance and the enablers of drone adoption using logistic regression analysis under the TOE framework.

Findings

This study identifies inventory man agement, intra-logistics, inspections and surveillance are three major applications of drones in the smart warehousing. Further, nine enablers are identified for the adoption of drone in warehouse management. The findings suggest that operational effectiveness, compatibility of drone integration and quality/value offered are the most impactful enablers of drone adoption in warehouses. The logistic regression findings are useful for warehouse managers who are planning to adopt drones in a warehouse for efficient operations.

Research limitations/implications

This study identifies the enablers of drone adoption in the smart and digital warehouse through the literature review and fuzzy Delphi. Therefore, some enablers may be overlooked during the identification process. In addition to this, the analysis is based on the opinion of the expert which might be influenced by their field of expertise.

Practical implications

By considering technology-organisation-environment (TOE) framework warehousing companies identify the opportunities and challenges associated with using drones in a smart warehouse and develop strategies to integrate drones into their operations effectively.

Originality/value

This study proposes a TOE-based framework for the adoption of drones in warehouse management to improve the three prominent warehouse functions inventory management, intra-logistics, inspections and surveillance using the mixed-method.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of 229