Search results

1 – 10 of 14
Article
Publication date: 25 January 2023

Sudev Dutta and Payal Bansal

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any…

Abstract

Purpose

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any parachute manufacturing industry and its components under varying operational conditions. Hence, the knowledge of various textile materials and operational conditions which contributes the parachute strength and durability will be helpful for industries/researchers.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Parachute is a material used in numerous real-time applications such as man-drop, cargo delivery, aircraft recovery and aircraft decelerator which drastically reduces human efforts and time. However, each application requires a unique design and fabric selection to achieve the area of drag needed and the terminal velocity of the parachute material while in flight. For designing a man-drop parachute, the most critical parameters are weight and strength which must be considered during manufacturing. The army person uses the man-drop parachute, which must be as light as possible.

Originality/value

This paper is an original review work and will be helpful for parachute manufacturers/researchers to enhance the life of parachutes with improved functionality.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 February 2024

Eunice Benyah, Richard Acquaye and Raphael Kanyire Seidu

The innovativeness of dressmakers is a concern to respondents to satisfy their clothing needs. The purpose of this study is to determine the criteria that respondents use to judge…

Abstract

Purpose

The innovativeness of dressmakers is a concern to respondents to satisfy their clothing needs. The purpose of this study is to determine the criteria that respondents use to judge the quality of clothing and its influences on the innovative ability of dressmakers in the clothing manufacturing industries.

Design/methodology/approach

Three hundred and ninety-seven (397) respondents in the Takoradi Metropolis of Ghana filled out a questionnaire, and the results were used to compile data for the study. The sample size was calculated using Miller and Brewer formula. The data was analysed using structural equational modelling with the SmartPLS v.4 software.

Findings

The results showed that respondents are very interested in the calibre of clothing produced by their dressmakers. However, the study revealed that when evaluating the quality of a garment, respondents do not simply accept what has been sewn for them but also consider the performance, appearance, fit and shape of the garment. Findings revealed that there was a significant relationship between garment appearance quality (t = 2.605; p < 0.05), garment performance quality (t = 3.915; p < 0.05), garment shape quality (t = 6.248; p <0.05) and fashion innovations. Subsequently, the evaluation of garment fit quality by respondents revealed it does not bring about innovations (t = 1.310; p > 0.05).

Practical implications

The continuous evaluation of custom-made clothing from customers will go a long way towards highlighting the relative criteria they use to evaluate the innovation of dressmakers. This will help improve the creativity of the dressmakers since such feedback will help them understand and innovate their production skills to meet the preferences of customers.

Originality/value

The present study provides an in-depth understanding of how garment quality evaluation by customers influences the innovation of dressmakers in Takoradi, Ghana. The constructs were developed for the study to capture the appropriate data from customers for the study. This presents an evaluation criterion on four garment quality variables imperative for use or modification by other studies.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 April 2024

Satyaveer Singh, N. Yuvaraj and Reeta Wattal

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Abstract

Purpose

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Design/methodology/approach

This paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.

Findings

The optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.

Originality/value

The heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 March 2024

Gang Yu, Zhiqiang Li, Ruochen Zeng, Yucong Jin, Min Hu and Vijayan Sugumaran

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due…

48

Abstract

Purpose

Accurate prediction of the structural condition of urban critical infrastructure is crucial for predictive maintenance. However, the existing prediction methods lack precision due to limitations in utilizing heterogeneous sensing data and domain knowledge as well as insufficient generalizability resulting from limited data samples. This paper integrates implicit and qualitative expert knowledge into quantifiable values in tunnel condition assessment and proposes a tunnel structure prediction algorithm that augments a state-of-the-art attention-based long short-term memory (LSTM) model with expert rating knowledge to achieve robust prediction results to reasonably allocate maintenance resources.

Design/methodology/approach

Through formalizing domain experts' knowledge into quantitative tunnel condition index (TCI) with analytic hierarchy process (AHP), a fusion approach using sequence smoothing and sliding time window techniques is applied to the TCI and time-series sensing data. By incorporating both sensing data and expert ratings, an attention-based LSTM model is developed to improve prediction accuracy and reduce the uncertainty of structural influencing factors.

Findings

The empirical experiment in Dalian Road Tunnel in Shanghai, China showcases the effectiveness of the proposed method, which can comprehensively evaluate the tunnel structure condition and significantly improve prediction performance.

Originality/value

This study proposes a novel structure condition prediction algorithm that augments a state-of-the-art attention-based LSTM model with expert rating knowledge for robust prediction of structure condition of complex projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 January 2024

Md Rokibul Hasan, Ishtehar Sharif Swazan and Debanjan Das

This study aims to examine the export competitiveness of Vietnam’s apparel sector by identifying the precise product categories that create its comparative advantage.

Abstract

Purpose

This study aims to examine the export competitiveness of Vietnam’s apparel sector by identifying the precise product categories that create its comparative advantage.

Design/methodology/approach

Revealed comparative advantage (RCA) and normalized revealed comparative advantage (NRCA) form the research methodology, and the RCA/NRCA values are calculated for the 2011–2020 period.

Findings

In total, 29 out of 34 product categories at four-digit levels and 65 out of 217 subcategories at six-digit levels elicited a consistent export comparative advantage throughout the 10-year study timeframe. The study also identified 13 subcategories at six-digit levels, which indicated 10 consecutive years of relative disadvantages.

Research limitations/implications

The study’s findings have far-reaching implications for economic policy, development strategies and global economic integration. By providing a nuanced understanding of a country’s export strengths in the international apparel trade, this study offers valuable guidance for informed decision-making at various levels. The findings will serve as a significant source of information for policymakers and help them formulate novel policies aiming to diversify Vietnam’s apparel product offerings and export destinations. The results will also inform the government regarding the industry’s potential and attract necessary support, enabling it to grow further. This study reveals patterns in Vietnam’s apparel trade but does not provide insights into the underlying causes of comparative advantage.

Originality/value

The study provides an in-depth overview of Vietnam’s comparative advantages and disadvantages at two-, four- and six-digit harmonized system levels and helps understand Vietnam’s apparel export competitiveness.

Details

Journal of Chinese Economic and Foreign Trade Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-4408

Keywords

Article
Publication date: 10 July 2023

Yuzhen Long, Chunli Yang, Xiangchun Li, Weidong Lu, Qi Zhang and Jiaxing Gao

Coal is the basic energy and essential resource in China, which is crucial to the economic lifeline and energy security of the country. Coal mining has been ever exposed to…

Abstract

Purpose

Coal is the basic energy and essential resource in China, which is crucial to the economic lifeline and energy security of the country. Coal mining has been ever exposed to potential safety risks owing to the complex geologic environment. Effective safety supervision is a vital guarantee for safe production in coal mines. This paper aims to explore the impacts of the internet+ coal mine safety supervision (CMSS) mode that is being emerged in China.

Design/methodology/approach

In this study, the key factors influencing CMSS are identified by social network analysis. They are used to develop a multiple linear regression model of law enforcement frequency for conventional CMSS mode, which is then modified by an analytical hierarchy process to predict the law enforcement frequency of internet+ CMSS mode.

Findings

The regression model demonstrated high accuracy and reliability in predicting law enforcement frequency. Comparative analysis revealed that the law enforcement frequency in the internet+ mode was approximately 40% lower than the conventional mode. This reduction suggests a potential improvement in cost-efficiency, and the difference is expected to become even more significant with an increase in law enforcement frequency.

Originality/value

To the best of the authors’ knowledge, this is one of the few available pieces of research which explore the cost-efficiency of CMSS by forecasting law enforcement frequency. The study results provide a theoretical basis for promoting the internet+ CMSS mode to realize the healthy and sustainable development of the coal mining industry.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 19 April 2024

Nadeen Aboudahab, Jesús del Brío and Eman Abdelsalam

This study presents a comprehensive investigation of turnover intention within the context of higher education, specifically focusing on private universities in Egypt, to develop…

Abstract

Purpose

This study presents a comprehensive investigation of turnover intention within the context of higher education, specifically focusing on private universities in Egypt, to develop a robust conceptual framework to explore this phenomenon.

Design/methodology/approach

The study sample comprised both male and female tenured faculty members from private universities, and data were collected through questionnaires, resulting in 396 completed responses. Statistical analysis was conducted using SPSS and partial least squares structural equation modeling (PLS-SEM) software.

Findings

The study highlights the significant impact of work-life balance (WLB) and organizational commitment on turnover intention, with job satisfaction as a mediating factor. Additionally, the research reveals that emotional intelligence (EI) does not directly influence turnover intention, but its effects are fully mediated by job satisfaction.

Originality/value

This research not only advances the theoretical understanding of why academics contemplate leaving their positions but also underscores the significance of this topic. Moreover, by exploring turnover intention in the private education sector of the Middle East, the study addresses a notable gap in the existing literature.

Details

Journal of Applied Research in Higher Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-7003

Keywords

1 – 10 of 14