Search results

1 – 10 of over 1000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4540

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 March 2018

Joseph Bartolai, Timothy W. Simpson and Renxuan Xie

The weakest point in additively manufactured polymer parts produced by material extrusion additive manufacturing (MEAM) is the interface between adjacent layers and deposition…

Abstract

Purpose

The weakest point in additively manufactured polymer parts produced by material extrusion additive manufacturing (MEAM) is the interface between adjacent layers and deposition toolpaths or “roads”. This study aims to predict the mechanical strength of parts by utilizing a novel analytical approach. Strength predictions are made using the temperature history of these interfaces, polymer rheological data, and polymer weld theory.

Design/methodology/approach

The approach is validated using experimental data for two common 3D-printed polymers: polycarbonate (PC) and acrylonitrile butadiene styrene (ABS). Interface temperature history data are collected in situ using infrared imaging. Rheological data of the polycarbonate and acrylonitrile butadiene styrene used to fabricate the fused filament fabrication parts in this study have been determined experimentally.

Findings

The strength of the interfaces has been predicted, to within 10% of experimental strength, using polymer weld theory from the literature adapted to the specific properties of the polycarbonate and acrylonitrile butadiene styrene feedstock used in this study.

Originality/value

This paper introduces a novel approach for predicting the strength of parts produced by MEAM based on the strength of interfaces using polymer weld theory, polymer rheology, temperature history of the interface and the forces applied to the interface. Unlike methods that require experimental strength data as a prediction input, the proposed approach is material and build orientation agnostic once fundamental parameters related to material composition have been determined.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2013

Christian Baechler, Matthew DeVuono and Joshua M. Pearce

A low‐cost, open source, self‐replicating rapid prototyper (RepRap) has been developed, which greatly expands the potential user base of rapid prototypers. The operating cost of…

3507

Abstract

Purpose

A low‐cost, open source, self‐replicating rapid prototyper (RepRap) has been developed, which greatly expands the potential user base of rapid prototypers. The operating cost of the RepRap can be further reduced using waste polymers as feedstock. Centralized recycling of polymers is often uneconomic and energy intensive due to transportation embodied energy. The purpose of this paper is to provide a proof of concept for high‐value recycling of waste polymers at distributed creation sites.

Design/methodology/approach

Previous designs of waste plastic extruders (also known as RecycleBots) were evaluated using a weighted evaluation matrix. An updated design was completed and the description and analysis of the design is presented including component summary, testing procedures, a basic life cycle analysis and extrusion results. The filament was tested for consistency of density and diameter while quantifying electricity consumption.

Findings

Filament was successfully extruded at an average rate of 90 mm/min and used to print parts. The filament averaged 2.805 mm diameter with 87 per cent of samples between 2.540 mm and 3.081 mm. The average mass was 0.564 g/100 mm length. Energy use was 0.06 kWh/m.

Practical implications

The success of the RecycleBot further reduces RepRap operating costs, which enables distributed in‐home, value added, plastic recycling. This has implications for municipal waste management programs, as in‐home recycling could reduce cost and greenhouse gas emissions associated with waste collection and transportation, as well as the environmental impact of manufacturing custom plastic parts.

Originality/value

This paper reports on the first technical evaluation of a feedstock filament for the RepRap from waste plastic material made in a distributed recycling device.

Article
Publication date: 14 January 2020

Daniel Moreno Nieto and Sergio I. Molina

The build volumes of additive manufacturing (AM) technologies are increasing in size. This improvement is associated with the growing reliability of AM processes and is driven by…

Abstract

Purpose

The build volumes of additive manufacturing (AM) technologies are increasing in size. This improvement is associated with the growing reliability of AM processes and is driven by a rise in demand from several industries. Large-format additive manufacturing (LFAM), when referring to polymeric extrusion systems, is quite new in the field of AM. The purpose of this paper is to present a review of large-format (those with build volumes over 1 m3) fused deposition or extrusion-based AM equipment.

Design/methodology/approach

This paper presents an exhaustive literature review for all the publications in the field of AM in the current decade, as well as technological coverage in the news, specialized blogs and technology fairs since the year 2015.

Findings

This review reveals growing scientific and industrial activity, as well as in equipment, in the field of LFAM. An increase in research activity is also occurring in parallel with a growing interest, potential and adaptation of these technologies in certain industries.

Originality/value

This review may be the first publication to collect the majority of existing information on LFAM for polymeric extrusion systems in terms of applied extrusion technologies, commercial products, specific material research and developments, intellectual property, design and simulation solutions, as well as its practical applications.

Article
Publication date: 2 February 2021

Ali Alperen Bakır, Resul Atik and Sezer Özerinç

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used…

1147

Abstract

Purpose

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used technique for the manufacturing of thermoplastic parts. The mechanical performance of these parts under service conditions is difficult to predict due to the large number of process parameters involved. The review summarizes the current knowledge about the process-property relationships for FDM-based three-dimensional printing.

Design/methodology/approach

The review first discusses the effect of material selection, including pure thermoplastics and polymer-matrix composites. Second, process parameters such as nozzle temperature, raster orientation and infill ratio are discussed. Mechanisms that these parameters affect the specimen morphology are explained, and the effect of each parameter on the strength of printed parts are systematically presented.

Findings

Mechanical properties of FDM-produced parts strongly depend on process parameters and are usually lower than injection-molded counterparts. There is a need to understand the effect of each parameter and any synergistic effects involved better.

Practical implications

Through the optimization of process parameters, FDM has the potential to produce parts with strength values matching those produced by conventional methods. Further work in the field will make the FDM process more suitable for the manufacturing of load-bearing components.

Originality/value

This paper presents a critical assessment of the current knowledge about the mechanical properties of FDM-produced parts and suggests future research directions.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 April 2023

Saratchandra Kundurthi, Felix Tran, Si Chen, Javed Mapkar and Mahmoodul Haq

Material extrusion additive manufacturing processes inevitably produce bead-shaped surface patterns on the walls of parts, which create stress concentrations under load. This…

168

Abstract

Purpose

Material extrusion additive manufacturing processes inevitably produce bead-shaped surface patterns on the walls of parts, which create stress concentrations under load. This study aims to investigate the influence of such stress concentrations on the strength along the build direction (“Z-strength”).

Design/methodology/approach

This work consists of two main parts – an experimental demonstration to show the significance of stress concentrations on the Z-strength, followed by numerical modeling to evaluate the theoretical stress concentration factors (kt) for such shapes. Meso-scale finite element analysis (FEA) was performed to evaluate kt at the roots of the intersecting bead shapes. The critical bead shape parameters influencing kt were identified, and parametric FEA studies were performed on different bead shapes by varying the normalized parameters.

Findings

The experimental results showed that up to a 40% reduction in the effective Z-strength could be attributed only to the presence of surface bead shapes. Bead overhang and root radius were identified as critical shape parameters influencing kt. The results of the parametric FEA studies were used to generate a single empirical equation to determine kt for any bead shape.

Originality/value

Predictive models for Z-strength often focus on crystallization kinetics and polymer chain interdiffusion to predict interlayer adhesion strength. The authors propose that the results of such studies must be combined with surface bead-shape induced stress concentration factors to obtain the combined, “effective” Z-strength.

Article
Publication date: 28 June 2022

Rishi Parvanda and Prateek Kala

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The…

Abstract

Purpose

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The study aims to extend the use of FDM printers for 3D printing of low melting point alloy (LMPA), which has applications in the electronics industry, rapid tooling, biomedical, etc.

Design/methodology/approach

Solder is the LMPA with alloy’s melting temperature (around 200°C) lower than the parent metals. The most common composition of the solder, which is widely used, is tin and lead. However, lead is a hazardous material having environmental and health deteriorating effects. Therefore, lead-free Sn89Bi10Cu non-eutectic alloy in the form of filament was used. The step-by-step method has been used to identify the process window for temperature, print speed, filament length (E) and layer height. The existing FDM printer was customized for the present work.

Findings

Analysis of infrared images has been done to understand discontinuity at a certain range of process parameters. The effect of printing parameters on inter-bonding, width and thickness of the layers has also been studied. The microstructure of the parent material and deposited bead has been observed. Conclusions were drawn out based on the results, and the scope for the future has been pointed out.

Originality/value

The experiments resulted in the process window identification of print speed, extrusion temperature, filament length and layer height of Sn89Bi10Cu which is not done previously.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 June 2021

Shirun Ding and Bing Feng Ng

This study aims to examine on-site particle concentration levels due to emissions from a wide spectrum of additive manufacturing techniques, including polymer-based material…

Abstract

Purpose

This study aims to examine on-site particle concentration levels due to emissions from a wide spectrum of additive manufacturing techniques, including polymer-based material extrusion, metal and polymer-based powder bed fusion, directed energy deposition and ink-based material jetting.

Design/methodology/approach

Particle concentrations in the operating environments of users were measured using a combination of particle sizers including the TSI 3910 Nano SMPS (10–420 nm) and the TSI 3330 optical particle sizer (0.3–10 µm). Also, fumes from a MEX printer during printing were directly captured using laser imaging method.

Findings

The number and mass concentration of submicron particles emitted from a desktop open-type MEX printer for acrylonitrile-butadiene-styrene and polyvinyl alcohol approached and significantly exceeded the nanoparticle reference limits, respectively. Through laser imaging, fumes were observed to originate from the printer nozzle and from newly deposited layers of the desktop MEX printer. On the other hand, caution should be taken in the pre-processing of metal and polymer powder. Specifically, one to ten micrometers of particles were observed during the sieving, loading and cleaning of powder, with transient mass concentrations ranging between 150 and 9,000 µg/m3 that significantly exceeded the threshold level suggested for indoor air quality.

Originality/value

Preliminary investigation into possible exposures to particle emissions from different 3D printing processes was done, which is useful for the sustainable development of the 3D printing industry. In addition, automatic processes that enable “closed powder cycle” or “powder free handling” should be adopted to prevent users from unnecessary particle exposure.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 October 2021

Kaiyang Zhu, Zichen Deng, Shi Dai and Yajun Yu

This study aims to focus on the effect of interlayer bonding and thermal decomposition on the mechanical properties of fused filament fabrication-printed polylactic acid specimens…

Abstract

Purpose

This study aims to focus on the effect of interlayer bonding and thermal decomposition on the mechanical properties of fused filament fabrication-printed polylactic acid specimens at high extrusion temperatures.

Design/methodology/approach

A printing process, that is simultaneous manufacturing of contour and specimen, is used to improve the printing accuracy at high extrusion temperatures. The effects of the extrusion temperature on the mechanical properties of the interlayer and intra-layer are evaluated via tensile experiments. In addition, the microstructure evolution affected by the extrusion temperature is observed using scanning electron microscopy.

Findings

The results show that the extrusion temperature can effectively improve the interlayer bonding property; however, the mechanical properties of the specimen for extrusion temperatures higher than 270°C may worsen owing to the thermal decomposition of the polylactic acid (PLA) material. The optimum extrusion temperature of PLA material in the three-dimensional (3D) printing process is recommended to be 250–270°C.

Originality/value

A temperature-compensated constitutive model for 3D printed PLA material under different extrusion temperatures is proposed. The present work facilitates the prediction of the mechanical properties of specimens at an extrusion temperature for different printing temperatures and different layers.

Details

Rapid Prototyping Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000