Search results

1 – 10 of 75
Article
Publication date: 20 October 2014

Czesław Kundera and Jerzy Bochnia

– This paper aims to investigate the suitability of additive manufacturing to produce O-ring seals.

Abstract

Purpose

This paper aims to investigate the suitability of additive manufacturing to produce O-ring seals.

Design/methodology/approach

The O-rings were made by the PolyJet-Matrix technology using four different digital materials and then tested for relaxation properties under static and dynamic (sliding) conditions. The approximation of the relaxation curves involved modelling with a Prony series.

Findings

The PolyJet-Matrix technology offers new opportunities to model elastomeric elements, with examples being the O-rings produced and tested for their relaxation properties. Describing the behaviour of the particular materials fabricated with this technology by using relaxation functions will extend the knowledge base on digital materials.

Research limitations/implications

The four types of photopolymers used in the experiment differed in viscoelastic properties. The analysis of the stress relaxation of the O-ring models was performed at four different step displacements of the loading element.

Practical implications

The test results may be useful for the design of O-ring seals made of new elastomeric materials. The relaxation properties of the O-rings made of such materials can be applied to analyse the dynamics of seals, for instance, face seals.

Originality/value

The originality of the work lies in the use of digital materials to design and produce elastomeric elements with different relaxation properties, which was confirmed by the test results. This paper presents results of a relaxation analysis for a ring model and the material that the ring is made of. It also discusses how 3D printing and digital materials can be applied in practice.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 January 2021

Dan Wang, Kun Wu, Guanlin Li and Lifeng Wang

The purpose of this paper is to study the mechanical property of three-dimensional (3D) Printed photopolymer (Vero Yellow and Tango Black) with different constant strain rate…

Abstract

Purpose

The purpose of this paper is to study the mechanical property of three-dimensional (3D) Printed photopolymer (Vero Yellow and Tango Black) with different constant strain rate. According to the experimental results, three constitutive models are used to describe the stress-strain and stress-time relation in the tension and stress relaxation process.

Design/methodology/approach

The Stratasys Objet 260 was used to prepare the four groups of samples with different photopolymers (Vero Yellow and Tango Black). The stress-strain and stress-time relations are obtained by the uniaxial tensile tests and relaxation tests performed at room temperature with different constant strain rates. The generalized Kelvin model (GKM), standard linearized model (SLM) and fractional order model (FOM) are used to describe experimental data by means of the curve-fitting approach.

Findings

Experimental results show that the tension stress increases faster at a higher strain-rate for tensile tests. Relaxation stress is influenced by the preload strain-rate for relaxation tests. For the theoretical fitting, the error comparison between three constitutive models and experimental data are calculated to demonstrate the high accuracy in describing the stress-strain relationship for tension. For stress relaxation, the error comparison confirms higher accuracy of FOM with the largest error within 3%, while the error of GKM and SLM up to 10%.

Originality/value

The paper confirms the viscous-elastic mechanical property of 3D printed photopolymer composites (Vero Yellow and Tango Black) for Stratasys PolyJet. As FOM shows high accuracy both in describing stress-strain and stress-time relation for tension and stress relaxation process, it can be directly used as a constitutive model to predict mechanical properties for engineering application.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 January 2017

Zhengyan Zhang and Sanjay Joshi

This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of…

1337

Abstract

Purpose

This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of complex heterogeneous material allowing for the additive manufacturing-based build of a wide range of objects that are limited only by the constraints of the manufacturing process.

Design/methodology/approach

Initial 3D CAD models are created with multiple and functionally graded materials using an assembly model to create a single part with well-defined material regions. These models are then sliced to create the geometry and material boundaries required for each layer to enable layer-by-layer fabrication.

Findings

A representation schema is proposed to add multi-material attributes to a sliced file for additive manufacturing using the combination of material index and material geometry region. A modified common layer interface data format is proposed to allow for representation of a wide range of homogeneous and heterogeneous material for each slice. This format allows for a generic input for tool paths to be generated for each material of the layer.

Originality/value

The proposed approach allows for slice data representation for any material combination that can be defined mathematically. Three different material types, namely, composite material, functionally graded materials and combination thereof, are provided as examples. These data form the input data for subsequent tool path planning.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 April 2013

Chi Zhou, Yong Chen, Zhigang Yang and Behrokh Khoshnevis

The purpose of this paper is to present a mask‐image‐projection‐based stereolithography (MIP‐SL) process that can combine two base materials with various concentrations and…

4289

Abstract

Purpose

The purpose of this paper is to present a mask‐image‐projection‐based stereolithography (MIP‐SL) process that can combine two base materials with various concentrations and structures to produce a solid object with desired material characteristics. Stereolithography is an additive manufacturing process in which liquid photopolymer resin is cross‐linked and converted to solid. The fabrication of digital material requires frequent resin changes during the building process. The process presented in this paper attempts to address the related challenges in achieving such fabrication capability.

Design/methodology/approach

A two‐channel system design is presented for the multi‐material MIP‐SL process. In such a design, a coated thick film and linear motions in two axes are used to reduce the separation force of a cured layer. The material cleaning approach to thoroughly remove resin residue on built surfaces is presented for the developed process. Based on a developed testbed, experimental studies were conducted to verify the effectiveness of the presented process on digital material fabrication.

Findings

The proposed two‐channel system can reduce the separation force of a cured layer by an order of magnitude in the bottom‐up projection system. The developed two‐stage cleaning approach can effectively remove resin residue on built surfaces. Several multi‐material designs have been fabricated to highlight the capability of the developed MIP‐SL process.

Research limitations/implications

A proof‐of‐concept testbed has been developed. Its building speed and accuracy can be further improved. The tests were limited to the same type of liquid resins. In addition, the removal of trapped air is a challenge in the presented process.

Originality/value

This paper presents a novel and a pioneering approach towards digital material fabrication based on the stereolithography process. This research contributes to the additive manufacturing development by significantly expanding the selection of base materials in fabricating solid objects with desired material characteristics.

Article
Publication date: 11 August 2023

Kevin Moj, Robert Owsiński, Grzegorz Robak and Munish Kumar Gupta

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of…

Abstract

Purpose

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of structural components with enhanced performance. Numerous studies have shown that the technical qualities of AM components are profoundly affected by the discovery of novel metastable substructures in diverse alloys. Therefore, the purpose of this study is to determine the effect of cell structure parameters on its mechanical response.

Design/methodology/approach

Initially, a methodology was suggested for testing porous materials, focusing on static tensile testing. For a qualitative evaluation of the cellular structures produced, computed tomography (CT) was used. Then, the CT scanner was used to analyze a sample and determine its actual relative density, as well as perform a detailed geometric analysis.

Findings

The experimental research demonstrates that the mechanical properties of a cell’s structure are significantly influenced by its shape during formation. It was also determined that using selective laser melting to produce cell structures with a minimum single-cell size of approximately 2 mm would be the most appropriate method.

Research limitations/implications

Further studies of cellular structures for testing their static tensile strength are planned for the future. The study will be carried out for a larger number of samples, taking into account a wider range of cellular structure parameters. An important step will also be the verification of the results of the static tensile test using numerical analysis for the model obtained by CT scanning.

Originality/value

The fabrication of metallic parts with different cellular structures is very important with a selective laser melted machine. However, the determination of cell size and structure with mechanical properties is quiet novel in this current investigation.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 February 2021

Furkan Ulu, Ravi Pratap Singh Tomar and Ram Mohan

PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed…

Abstract

Purpose

PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed structural parts. This paper aims to investigate the processing and mechanical characteristics of composite material configurations formed from soft and hard materials with different distributions and sizes via voxel digital print design.

Design/methodology/approach

Voxels are extruded representations of pixels and represent different material information similar to each pixel representing colors in digital images. Each geometric region of a digitally designed part represented by a voxel can be printed with a different material. Multi-material composite part configurations were formed and rapidly prototyped using a PolyJet printer Stratasys J750. A design of experiments composite part configuration of a soft material (Tango Plus) within a hard material matrix (Vero Black) was studied. Composite structures with different hard and soft material distributions, but at the same volume fractions of hard and soft materials, were rapidly prototyped via PolyJet printing through developed Voxel digital printing designs. The tensile behavior of these formed composite material configurations was studied.

Findings

Processing and mechanical behavior characteristics depend on materials in different regions and their distributions. Tensile characterization obtained the fracture energy, tensile strength, modulus and failure strength of different hard-soft composite systems. Mechanical properties and behavior of all different composite material systems are compared.

Practical implications

Tensile characteristics correlate to digital voxel designs that play a critical role in additive manufacturing, in addition to the formed material composition and distributions.

Originality/value

Results clearly indicate that multi-material composite systems with various tensile mechanical properties could be created using voxel printing by engineering the design of material distributions, and sizes. The important parameters such as inclusion size and distribution can easily be controlled within all slices via voxel digital designs in PolyJet printing. Therefore, engineers and designers can manipulate entire morphology and material at each voxel level, and different prototype morphologies can be created with the same voxel digital design. In addition, difficulties from AM process with voxel printing for such material designs is addressed, and effective digital solutions were used for successful prototypes. Some of these difficulties are extra support material or printing the part with different dimension than it designed to achieve the final part dimension fidelity. Present work addressed and resolved such issued and provided cyber based software solutions using CAD and voxel discretization. All these increase broad adaptability of PolyJet AM in industry for prototyping and end-use.

Article
Publication date: 23 June 2021

Radhwan Bin Hussin, Safian Bin Sharif, Shayfull Zamree Bin Abd Rahim, Mohd Azlan Bin Suhaimi, Mohd Tanwyn Bin Mohd Khushairi, Abdellah Abdellah EL-Hadj and Norshah Afizi Bin Shuaib

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype…

Abstract

Purpose

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype applications, especially in the development of new products. The purpose of this study is to analyze the current application trends of RT techniques in producing hybrid mold inserts.

Design/methodology/approach

The direct and indirect RT techniques discussed in this paper are aimed at developing a hybrid mold insert using metal epoxy composite (MEC) in increasing the speed of tooling development and performance. An extensive review of the suitable development approach of hybrid mold inserts, material preparation and filler effect on physical and mechanical properties has been conducted.

Findings

Latest research studies indicate that it is possible to develop a hybrid material through the combination of different shapes/sizes of filler particles and it is expected to improve the compressive strength, thermal conductivity and consequently increasing the hybrid mold performance (cooling time and a number of molding cycles).

Research limitations/implications

The number of research studies on RT for hybrid mold inserts is still lacking as compared to research studies on conventional manufacturing technology. One of the significant limitations is on the ways to improve physical and mechanical properties due to the limited type, size and shape of materials that are currently available.

Originality/value

This review presents the related information and highlights the current gaps related to this field of study. In addition, it appraises the new formulation of MEC materials for the hybrid mold inserts in injection molding application and RT for non-metal products.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2022

Dorcas Kaweesa, Lourdes Bobbio, Allison M. Beese and Nicholas Alexander Meisel

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates…

Abstract

Purpose

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates theoretical models, such as the rule of mixtures, Halpin–Tsai model, Cox–Krenchel model and the Young–Beaumont model and the ability to predict the mechanical properties of particle-reinforced composites based on changes in the design of rigid particles at the microscale within a flexible polymer matrix.

Design/methodology/approach

This study leverages the PolyJet process for voxel-printing capabilities and a design of experiments approach to define the microstructural design elements (i.e. aspect ratio, orientation, size and volume fraction) used to create custom-designed composites.

Findings

The comparison between the predictions and experimental results helps identify appropriate methods for determining the mechanical properties of custom-designed composites ensuring informed design decisions for improved mechanical properties.

Originality/value

This work centers on multimaterial additive manufacturing leveraging design freedom and material complexity to create a wide range of composite materials. This study highlights the importance of identifying the process, structure and property relationships in material design.

Article
Publication date: 1 July 2014

Paweł Rokicki, Grzegorz Budzik, Krzysztof Kubiak, Jacek Bernaczek, Tomasz Dziubek, Marek Magniszewski, Andrzej Nowotnik, Jan Sieniawski, Hubert Matysiak, Rafał Cygan and Andrzej Trojan

The purpose of this paper is to present the advantages of computer-aided design/rapid prototyping (CAD/RP) usage in designing and manufacturing of the core models used for precise…

Abstract

Purpose

The purpose of this paper is to present the advantages of computer-aided design/rapid prototyping (CAD/RP) usage in designing and manufacturing of the core models used for precise casting with direct and single solidification of aircraft engine turbine blade cores.

Design/methodology/approach

The process of modelling three-dimensional CAD geometry of research blade in relation to the model of the core was presented with different wax types used in the RP technique.

Findings

The geometry of the blade model has been designed in a way which allows making a silicon mould on the basis of a base prototype in the process of rapid tooling (RP/RT). Filing by different wax types was investigated in mean of the impact on filling accuracy of the mould cavity.

Originality/value

The resulting models were used to make ceramic moulds and carry further work on the development of casting technology in the process of directional solidification and single crystal solidification of core blades of aircraft engines.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 12 October 2018

Sugavaneswaran M. and Arumaikkannu G.

This paper aims to additive manufacture (AM) the multi-material (MM) structure with directional-specific mechanical properties based on the classical lamination theory of…

Abstract

Purpose

This paper aims to additive manufacture (AM) the multi-material (MM) structure with directional-specific mechanical properties based on the classical lamination theory of composite materials.

Design/methodology/approach

The polyjet three-dimensional printing (3DP) process is used to fabricate the MM structure with directional-specific mechanical properties. MMs within a layer are positioned and oriented based on the classical lamination theory to achieve directional-specific properties. Mechanical behavior of the AM structure was examined under various loading conditions to justify the directional-specific properties.

Findings

With MM processing capabilities of the polyjet 3DP machine, AM MM structures with directional-specific mechanical properties were fabricated. From experimentation, it was observed that the AM MM structure with a quasi-isotropic laminate has superior tensile and flexural strength, and the AM MM structure with an angle ply laminate has superior shear strength. Various mechanical properties determined through testing will be useful for the selection of an appropriate layup arrangement within a structure for appropriate loading conditions.

Originality/value

This study presents the innovative methodology for the fabrication of AM MM structures with tailor-made mechanical properties. The developed methodology paves way for using the polyjet 3DP MM structure for applications such as the complaint mechanism, snap fits and thin features, which require directional-specific properties.

Details

Rapid Prototyping Journal, vol. 24 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 75