To read this content please select one of the options below:

Prediction and validation of composite mechanical properties resulting from voxel-based microstructural design in material jetting

Dorcas Kaweesa (Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA)
Lourdes Bobbio (Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, USA, and)
Allison M. Beese (Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, USA, and)
Nicholas Alexander Meisel (School of Engineering Design, Technology, and Professional Programs, Pennsylvania State University, University Park, Pennsylvania, USA)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 30 August 2022

Issue publication date: 2 March 2023

165

Abstract

Purpose

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates theoretical models, such as the rule of mixtures, Halpin–Tsai model, Cox–Krenchel model and the Young–Beaumont model and the ability to predict the mechanical properties of particle-reinforced composites based on changes in the design of rigid particles at the microscale within a flexible polymer matrix.

Design/methodology/approach

This study leverages the PolyJet process for voxel-printing capabilities and a design of experiments approach to define the microstructural design elements (i.e. aspect ratio, orientation, size and volume fraction) used to create custom-designed composites.

Findings

The comparison between the predictions and experimental results helps identify appropriate methods for determining the mechanical properties of custom-designed composites ensuring informed design decisions for improved mechanical properties.

Originality/value

This work centers on multimaterial additive manufacturing leveraging design freedom and material complexity to create a wide range of composite materials. This study highlights the importance of identifying the process, structure and property relationships in material design.

Keywords

Acknowledgements

L.B. was supported by an NDSEG Fellowship.

Citation

Kaweesa, D., Bobbio, L., Beese, A.M. and Meisel, N.A. (2023), "Prediction and validation of composite mechanical properties resulting from voxel-based microstructural design in material jetting", Rapid Prototyping Journal, Vol. 29 No. 3, pp. 488-503. https://doi.org/10.1108/RPJ-12-2021-0343

Publisher

:

Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles