Search results

1 – 10 of over 2000
Article
Publication date: 26 June 2021

Jianxing Gu, Chen Yu, ZhenZe Yang, Peng Xue, Ning Jing and Saimei Yan

This study aims to optimize the structure of gold-sputtered U-shaped plastic fiber sensors.

Abstract

Purpose

This study aims to optimize the structure of gold-sputtered U-shaped plastic fiber sensors.

Design/methodology/approach

A group of U-shaped Au-sputtered plastic optical fiber sensing probes with polishing angles of 45°, 90° and 135° is prepared.

Findings

The experimental results show that the spectral response and sensitivity of the sensor at 45°polishing angle is twice that of the sensor at 90°.

Research limitations/implications

Due to the limitations of laboratory temperature and equipment, the overall effect has not reached the ideal, but the expected effect has been obvious. Experiments also optimize the sensor.

Practical implications

Optical fiber sensing has always been an indispensable part of various fields.

Social implications

Sensor optimization is of great help to the progress of technology and the development of science and technology.

Originality/value

The authors have no conflicts of interest to disclose.

Article
Publication date: 2 November 2022

Xufeng Liang, Zhenhua Cai, Chunnian Zeng, Zixin Mu, Zifan Li, Fan Yang, Tingyang Chen, Shujuan Dong, Chunming Deng and Shaopeng Niu

The application of thermal barrier coatings (TBCs) allows aero-engine blades to operate at higher temperatures with higher efficiency. The preparation of the TBCs increases the…

Abstract

Purpose

The application of thermal barrier coatings (TBCs) allows aero-engine blades to operate at higher temperatures with higher efficiency. The preparation of the TBCs increases the surface roughness of the blade, which impacts the thermal cycle life and thermal insulation performance of the coating. To reduce the surface roughness of blades, particularly the blades with small size and complex curvature, this paper aims to propose a method for industrial robot polishing trajectory planning based on on-site measuring point cloud.

Design/methodology/approach

The authors propose an integrated robotic polishing trajectory planning method using point cloud processing technical. At first, the acquired point cloud is preprocessed, which includes filtering and plane segmentation algorithm, to extract the blade body point cloud. Then, the point cloud slicing algorithm and the intersection method are used to create a preliminary contact point set. Finally, the Douglas–Peucker algorithm and pose frame estimation are applied to extract the tool-tip positions and optimize the tool contact posture, respectively. The resultant trajectory is evaluated by simulation and experiment implementation.

Findings

The target points of trajectory are not evenly distributed on the blade surface but rather fluctuate with surface curvature. The simulated linear and orientation speeds of the robot end could be relatively steady over 98% of the total time within 20% reduction of the rest time. After polishing experiments, the coating roughness on the blade surface is reduced dramatically from Ra 7–8 µm to below Ra 1.0 µm. The removal of the TBCs is less than 100 mg, which is significantly less than the weight of the prepared coatings. The blade surface becomes smoothed to a mirror-like state.

Originality/value

The research on robotic polishing of aero-engine turbine blade TBCs is worthwhile. The real-time trajectory planning based on measuring point cloud can address the problem that there is no standard computer-aided drawing model and the geometry and size of the workpiece to be processed differ. The extraction and optimization of tool contact points based on point cloud features can enhance the smoothness of the robot movement, stability of the polishing speed and performance of the blade surface after polishing.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 November 1988

Montford's modular, walk‐in environmental test chamber offers a new, cost‐effective approach to large enclosure construction. It minimises site work and provides an adaptable…

Abstract

Montford's modular, walk‐in environmental test chamber offers a new, cost‐effective approach to large enclosure construction. It minimises site work and provides an adaptable design for economical large batch thermal cycling of a wide variety of products. Significantly, all of the unit's thermal conditioning and control devices are supplied ready tested to provide the advantages of a factory‐built system and to speed commissioning.

Details

Aircraft Engineering and Aerospace Technology, vol. 60 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 3 April 2017

József Hlinka, Miklós Berczeli, Gábor Buza and Zoltán Weltsch

This paper aims to discuss the effect of surface treatment on the wettability between copper and a lead-free solder paste. The industrial applications of laser technologies are…

Abstract

Purpose

This paper aims to discuss the effect of surface treatment on the wettability between copper and a lead-free solder paste. The industrial applications of laser technologies are increasing constantly. A specific laser treatment can modify the surface energy of copper and affect the wetting properties.

Design/methodology/approach

The surfaces of copper plates were treated using an Nd:YAG laser with varying laser powers. After laser surface treatment, wetting experiments were performed between the copper plates and SAC305 lead-free solder paste. The effect of laser treatment on copper surface was analysed using optical microscopy and scanning electron microscopy (SEM).

Findings

The experimental results showed that the wetting contact angles changed with the variation in laser power. Furthermore, it means that the surface energy of copper plates was changed by the laser treatment. The results demonstrated that the contact angles also changed when a different soldering paste was used.

Originality/value

Previous laser surface treatment can be a possible way to optimize the wettability between solders and substrates and to increase the quality of the soldered joints.

Details

Soldering & Surface Mount Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 July 2024

Ugur Mecid Dilberoglu, Ulas Yaman and Melik Dolen

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating…

Abstract

Purpose

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating smooth surfaces on FFF specimens and establish trends about specific parameters.

Design/methodology/approach

In this study, PLA and ABS samples fabricated by FFF are subjected to side milling in several experiments. Achievable surface quality is studied in relation to material properties, milling parameters, tooling and macrostructure. The surface finish is quantified using profile measurements of the processed surfaces. The study classifies the created chips into categories that can be used as criteria for the anticipated quality. Spectral analysis is used to examine the various surface formation modes. Thermal monitoring is used to track chip formation and surface temperature changes during the milling process.

Findings

This study reveals that effective heat dissipation through proper chip formation is vital for maintaining high surface quality. Recommended methodology demands using a tool with a substantial flute volume, using high positive rake and clearance angles and optimizing the feed-per-tooth and cutting speed. Disregarding these guidelines may cause the surface temperature to surpass the material’s glass transition, resulting in inferior quality characterized by viscous folding. For FFF thermoplastics, optimal milling can bring the average surface roughness down to the micron level.

Originality/value

This research contributes to the field by providing valuable guidance for achieving superior results in milling FFF parts. This study includes a concise summary of the theoretically relevant insights, presents verification of the key factors by qualitative analysis and offers optimal milling parameters for 3D-printed thermoplastics based on systematic experiments.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 April 2016

Guang Chen, Bomin Huang, Hui Liu, Y.C. Chan, Zirong Tang and Fengshun Wu

The purpose of this paper is to investigate microstructure and properties of Sn3.0Ag0.5Cu-XAl2O3 composite solder which were prepared through powder metallurgy route.

Abstract

Purpose

The purpose of this paper is to investigate microstructure and properties of Sn3.0Ag0.5Cu-XAl2O3 composite solder which were prepared through powder metallurgy route.

Design/methodology/approach

Sn3.0Ag0.5Cu (SAC305)-XAl2O3 (X = 0.2, 0.4, 0.6, 0.8 Wt. %) composite solders were prepared through the powder metallurgy route. The morphology of composite solder powders which consists of Al2O3 particles and SAC solder powders after ball milling was observed. The retained ratio of Al2O3 nanoparticles in composite solder billets and solder joints were also quantitatively measured. Furthermore, the as-prepared composite solder alloys were studied extensively with regard to their microstructures, thermal property, wettability and mechanical properties.

Findings

After ball milling, the Al2O3 nanoparticles added were observed embedded into the surface of SAC solder powders. Only about 5-10 per cent of the initial Al2O3 nanoparticles added were detected in the composite solder joints after reflow. In addition, finer ß-Sn grains were achieved with addition of Al2O3 nanoparticles; the Al2O3 nanoparticles were found retained in the composite solder matrix. Besides, negligible changes in melting temperature and the considerably reduced undercooling were obtained in composite solder alloys. Wettability was improved by appropriate addition of Al2O3 nanoparticles. Microhardness and shear strength of composite solders were both improved after Al2O3 nanoparticles addition.

Originality/value

This paper indicated that powder metallurgy route offered a feasible approach to produce nanoparticle reinforced composite solder. In addition, the quantitative analysis of the actual retained ratio of the Al2O3 nanoparticles in solder joints provided practical implications for the manufacture of composite solders.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 September 1971

T. WILLIAMS, CEng, AFRAeS and AMInstHE

THE factors which affect tyre/runway adhesion are complex and interdependent. This article will discuss some of these factors keeping in mind the relative influence varies with…

Abstract

THE factors which affect tyre/runway adhesion are complex and interdependent. This article will discuss some of these factors keeping in mind the relative influence varies with the particular conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 43 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 2003

Brian Rooks

A report on the vision systems featured at the new TEAM exhibition. The products and applications of three companies are highlighted. Two exhibitors have contrasting approaches to…

Abstract

A report on the vision systems featured at the new TEAM exhibition. The products and applications of three companies are highlighted. Two exhibitors have contrasting approaches to the application of vision: DVT takes the integrated route with “all in” intelligent cameras while Data Translation follows the PC‐based philosophy with separate frame grabbers. The third company discussed is Leica Geosystems and its laser tracker mobile measurement systems used for inspection of large components as well as the control and calibration of robots, machine tools and the like. Leica introduced a new handheld probe for inspecting deep cavities and a new laser radar system that, unlike the tracker, needs no reflectors mounted on the object under inspection.

Details

Sensor Review, vol. 23 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 2001

Robert Bogue

Summarises six key papers presented at the Sensor and Transducer Conference, Birmingham, UK, 14‐15 February 2001. Features gas and chemical sensors using laser ring‐down, and…

Abstract

Summarises six key papers presented at the Sensor and Transducer Conference, Birmingham, UK, 14‐15 February 2001. Features gas and chemical sensors using laser ring‐down, and photo acoustic, effects as well as wave guides and Bragg gratings. Also discusses self‐powered sensors, micro‐electromechanical systems and fibre optic sensors.

Details

Sensor Review, vol. 21 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Abstract

Purpose

This paper aims to investigate the effect of centrifugal disk finishing (CDF) technique on the surface and subsurface characteristics of the fused deposited modeling (FDM) parts in both theoretical and experimental aspects. From theoretical aspect, a novel theoretical model is developed as a function of layer deposition orientation, layer thickness, finishing working time, density ratio and hardness ratio to estimate the surface roughness profile of FDM part at different finishing conditions and finishing time intervals. Meanwhile, from the experimental aspect, an experimental campaign was performed under different mechanical and mechanical-chemical finishing conditions to verify the theoretical model and also assess the surface and subsurface characteristics of the polished parts.

Design/methodology/approach

The theoretical model commences with an approximation of surface profile of the FDM part through a sequence of parabola arcs, continues with the calculation of reference line and machined surface profile and leads to a formulation of surface roughness of as-printed and polished surface. In the experimental section, the FDM parts are polished under dry, pure water, 25% and 50% volumetric aqueous acetone solutions finishing conditions through CDF technique.

Findings

The comparison between experimental and theoretical results reveals 9% mean absolute error between theoretical and experimental results. Meanwhile, Rq reduction percentage of polished parts under dry, pure water, 25% and 50% aqueous acetone solutions are 66.1%, 54.5%, 56.9% and 67.2%, respectively. The scanning electron microscopy results reveal severe layer damage in dry finishing condition, while the application of 50% aqueous acetone as a polishing solution completely eliminates layer damage. Another promising finding was sticky material phenomenon on the surface of polished part under 25% finishing condition. The Shore hardness test illustrates that the surface hardness improvement of the polished parts under dry, pure water, 25% and 50% aqueous acetone solutions finishing conditions are 8.4%, 2.25%, 4.36% and 10.8%, respectively. The results also revealed that the dimension variation of polished parts under dry, pure water, 25% and 50% aqueous acetone solutions are 0.634%, 0.525%, 0.545% and 0.608%, respectively. The edge profile radius of the as-printed part is 134 µm, while the edge profiles radius of the polished parts under dry, pure water, 25% aqueous acetone solution and 50% aqueous acetone solution are 785.5 µm, 545.5 µm, 623.5 µm and 721.5 µm, respectively, at the polishing time of 720 min.

Originality/value

This paper fulfills an identified need to study the benefits of the mechanical-chemical polishing technique in comparison to mechanical and chemical polishing strategy of the FDM parts for the first time. Beside the experimental campaign, the novel analytical formulation of surface roughness as a function of mechanical properties of abrasive media and FDM part and finishing specifications provides a valuable insight in the case of material-removal processes.

1 – 10 of over 2000