Search results

1 – 10 of 447
Article
Publication date: 10 August 2023

Mengjiao Wang and Liting Ding

To solve the problem that the traditional methods miss key information in the process of bearing fault identification, this paper aims to apply the phase-space reconstruction…

Abstract

Purpose

To solve the problem that the traditional methods miss key information in the process of bearing fault identification, this paper aims to apply the phase-space reconstruction (PSR) theory and intelligent diagnosis techniques to extend the one-dimensional vibration signal to the high-dimensional phase space to reveal the system information implied in the univariate time series of the vibration signal.

Design/methodology/approach

In this paper, a new method based on the PSR technique and convolutional neural network (CNN) is proposed. First, the delay time and the embedding dimension are determined by the C-C method and the false nearest neighbors method, respectively. Through the coordinate delay reconstruction method, the two-dimensional signal is constructed, and this information is saved in a set of gray images. Then, a simple and efficient convolutional network is proposed. Finally, the phase diagrams of different states are used as samples and input into a two-dimensional CNN for learning modeling to construct a PSR-CNN fault diagnosis model.

Findings

The proposed PSR-CNN model is tested on two data sets and compared with support vector machine (SVM), k-nearest neighbor (KNN) and Markov transition field methods, and the comparison results showed that the method proposed in this paper has higher accuracy and better generalization performance.

Originality/value

The method proposed in this paper provides a reliable solution in the field of rolling bearing fault diagnosis.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0113/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 January 2023

Yanqing Shi, Hongye Cao and Si Chen

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of…

Abstract

Purpose

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.

Design/methodology/approach

The authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.

Findings

There are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.

Originality/value

This study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.

Details

Aslib Journal of Information Management, vol. 76 no. 1
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 10 April 2024

Yuting Wang, Guodong Sun, Haisheng Wang and Bobo Jian

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D…

Abstract

Purpose

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D) phase-trajectory projection matrix, so a new set of features were proposed based on the projection of attractors trajectory to characterize the friction-induced attractors and to reveal the tribological behavior during the running-in process.

Design/methodology/approach

The frictional running-in experiments were conducted by sliding a ball against a static disk, and the friction coefficient was collected to reconstruct the friction-induced attractors. The projection of the attractors in 2D subspace was then mapped and the distribution of phase points was adapted to conduct the feature extraction.

Findings

The evolution of the proposed moment measures could be described as “initial rapid decrease/increase- midterm gradual decrease/increase- finally stable,” which could effectively reveal the convergence degree of the friction-induced attractors. Moreover, the measures could also describe the relative position of the attractors in phase–space domain, which reveal the amplitude evolution of signals to some extent.

Originality/value

The proposed measures could reveal the evolution of tribological behaviors during the running-in process and meet the more precise real-time running-in status identification.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 October 2023

Wenchao Zhang, Peixin Shi, Zhansheng Wang, Huajing Zhao, Xiaoqi Zhou and Pengjiao Jia

An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and…

Abstract

Purpose

An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and complex nature of the deformation makes the prediction challenging. This paper proposes an explainable boosted combining global and local feature multivariate regression (EB-GLFMR) model with high accuracy, robustness and interpretability to predict the deformation of retaining structures during braced deep excavations.

Design/methodology/approach

During the model development, the time series of deformation data is decomposed using a locally weighted scatterplot smoothing technique into trend and residual terms. The trend terms are analyzed through multiple adaptive spline regressions. The residual terms are reconstructed in phase space to extract both global and local features, which are then fed into a gradient-boosting model for prediction.

Findings

The proposed model outperforms other established approaches in terms of accuracy and robustness, as demonstrated through analyzing two cases of braced deep excavations.

Research limitations/implications

The model is designed for the prediction of the deformation of deep excavations with stepped, chaotic and fluctuating features. Further research needs to be conducted to expand the model applicability to other time series deformation data.

Practical implications

The model provides an efficient, robust and transparent approach to predict deformation during braced deep excavations. It serves as an effective decision support tool for engineers to ensure the stability and safety of deep excavations.

Originality/value

The model captures the global and local features of time series deformation of retaining structures and provides explicit expressions and feature importance for deformation trends and residuals, making it an efficient and transparent approach for deformation prediction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 April 2022

Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao and Meiting Liu

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional…

Abstract

Purpose

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).

Design/methodology/approach

First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.

Findings

The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.

Originality/value

It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 September 2023

Anchal Patil, Vipulesh Shardeo, Jitender Madaan, Ashish Dwivedi and Sanjoy Kumar Paul

This study aims to evaluate the dynamics between healthcare resource capacity expansion and disease spread. Further, the study estimates the resources required to respond to a…

Abstract

Purpose

This study aims to evaluate the dynamics between healthcare resource capacity expansion and disease spread. Further, the study estimates the resources required to respond to a pandemic appropriately.

Design/methodology/approach

This study adopts a system dynamics simulation and scenario analysis to experiment with the modification of the susceptible exposed infected and recovered (SEIR) model. The experiments evaluate diagnostic capacity expansion to identify suitable expansion plans and timelines. Afterwards, two popularly used forecasting tools, artificial neural network (ANN) and auto-regressive integrated moving average (ARIMA), are used to estimate the requirement of beds for a period when infection data became available.

Findings

The results from the study reflect that aggressive testing with isolation and integration of quarantine can be effective strategies to prevent disease outbreaks. The findings demonstrate that decision-makers must rapidly expand the diagnostic capacity during the first two weeks of the outbreak to support aggressive testing and isolation. Further, results confirm a healthcare resource deficit of at least two months for Delhi in the absence of these strategies. Also, the study findings highlight the importance of capacity expansion timelines by simulating a range of contact rates and disease infectivity in the early phase of the outbreak when various parameters are unknown. Further, it has been reflected that forecasting tools can effectively estimate healthcare resource requirements when pandemic data is available.

Practical implications

The models developed in the present study can be utilised by policymakers to suitably design the response plan. The decisions regarding how much diagnostics capacity is needed and when to expand capacity to minimise infection spread have been demonstrated for Delhi city. Also, the study proposed a decision support system (DSS) to assist the decision-maker in short- and long-term planning during the disease outbreak.

Originality/value

The study estimated the resources required for adopting an aggressive testing strategy. Several experiments were performed to successfully validate the robustness of the simulation model. The modification of SEIR model with diagnostic capacity increment, quarantine and testing block has been attempted to provide a distinct perspective on the testing strategy. The prevention of outbreaks has been addressed systematically.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 10
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 26 May 2022

Ismail Abiodun Sulaimon, Hafiz Alaka, Razak Olu-Ajayi, Mubashir Ahmad, Saheed Ajayi and Abdul Hye

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully…

263

Abstract

Purpose

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully investigated. This paper aims to investigate the effects traffic data set have on the performance of machine learning (ML) predictive models in AQ prediction.

Design/methodology/approach

To achieve this, the authors have set up an experiment with the control data set having only the AQ data set and meteorological (Met) data set, while the experimental data set is made up of the AQ data set, Met data set and traffic data set. Several ML models (such as extra trees regressor, eXtreme gradient boosting regressor, random forest regressor, K-neighbors regressor and two others) were trained, tested and compared on these individual combinations of data sets to predict the volume of PM2.5, PM10, NO2 and O3 in the atmosphere at various times of the day.

Findings

The result obtained showed that various ML algorithms react differently to the traffic data set despite generally contributing to the performance improvement of all the ML algorithms considered in this study by at least 20% and an error reduction of at least 18.97%.

Research limitations/implications

This research is limited in terms of the study area, and the result cannot be generalized outside of the UK as some of the inherent conditions may not be similar elsewhere. Additionally, only the ML algorithms commonly used in literature are considered in this research, therefore, leaving out a few other ML algorithms.

Practical implications

This study reinforces the belief that the traffic data set has a significant effect on improving the performance of air pollution ML prediction models. Hence, there is an indication that ML algorithms behave differently when trained with a form of traffic data set in the development of an AQ prediction model. This implies that developers and researchers in AQ prediction need to identify the ML algorithms that behave in their best interest before implementation.

Originality/value

The result of this study will enable researchers to focus more on algorithms of benefit when using traffic data sets in AQ prediction.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 20 May 2022

Noemi Manara, Lorenzo Rosset, Francesco Zambelli, Andrea Zanola and America Califano

In the field of heritage science, especially applied to buildings and artefacts made by organic hygroscopic materials, analyzing the microclimate has always been of extreme…

542

Abstract

Purpose

In the field of heritage science, especially applied to buildings and artefacts made by organic hygroscopic materials, analyzing the microclimate has always been of extreme importance. In particular, in many cases, the knowledge of the outdoor/indoor microclimate may support the decision process in conservation and preservation matters of historic buildings. This knowledge is often gained by implementing long and time-consuming monitoring campaigns that allow collecting atmospheric and climatic data.

Design/methodology/approach

Sometimes the collected time series may be corrupted, incomplete and/or subjected to the sensors' errors because of the remoteness of the historic building location, the natural aging of the sensor or the lack of a continuous check of the data downloading process. For this reason, in this work, an innovative approach about reconstructing the indoor microclimate into heritage buildings, just knowing the outdoor one, is proposed. This methodology is based on using machine learning tools known as variational auto encoders (VAEs), that are able to reconstruct time series and/or to fill data gaps.

Findings

The proposed approach is implemented using data collected in Ringebu Stave Church, a Norwegian medieval wooden heritage building. Reconstructing a realistic time series, for the vast majority of the year period, of the natural internal climate of the Church has been successfully implemented.

Originality/value

The novelty of this work is discussed in the framework of the existing literature. The work explores the potentials of machine learning tools compared to traditional ones, providing a method that is able to reliably fill missing data in time series.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 December 2023

Fatima Harbate, Nouh Izem, Mohammed Seaid and Dia Zeidan

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Abstract

Purpose

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Design/methodology/approach

The governed equations consist of a range of conservation laws modeling a classification of two-phase flow phenomena subjected to a velocity nonequilibrium for the gas–liquid mixture. Effects of the relative velocity are accounted for in the present model by a kinetic constitutive relation coupled to a collection of specific equations governing mass and volume fractions for the gas phase. Unlike many two-phase models, the considered system is fully hyperbolic and fully conservative. The suggested relaxation approach switches a nonlinear hyperbolic system into a semilinear model that includes a source relaxation term and characteristic linear properties. Notably, this model can be solved numerically without the use of Riemann solvers or linear iterations. For accurate time integration, a high-resolution spatial reconstruction and a Runge–Kutta scheme with decreasing total variation are used to discretize the relaxation system.

Findings

The method is used in addressing various nonequilibrium two-phase flow problems, accompanied by a comparative study of different reconstructions. The numerical results demonstrate the suggested relaxation method’s high-resolution capabilities, affirming its proficiency in delivering accurate simulations for flow regimes characterized by strong shocks.

Originality/value

While relaxation methods exhibit notable performance and competitive features, as far as we are aware, there has been no endeavor to address nonequilibrium two-phase flow problems using these methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 January 2022

Rajashekhar U., Neelappa and Harish H.M.

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation…

Abstract

Purpose

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation system was created that integrated natural interaction assisted by electroencephalogram (EEG), which enabled the movements in the virtual environment and real wheelchair. For blind wheelchair operator patients, this paper involved of expounding the proper methodology. For educating the value of life and independence of blind wheelchair users, outcomes have proven that virtual reality (VR) with EEG signals has that potential.

Design/methodology/approach

Individuals face numerous challenges with many disorders, particularly when multiple dysfunctions are diagnosed and especially for visually effected wheelchair users. This scenario, in reality, creates in a degree of incapacity on the part of the wheelchair user in terms of performing simple activities. Based on their specific medical needs, confined patients are treated in a modified method. Independent navigation is secured for individuals with vision and motor disabilities. There is a necessity for communication which justifies the use of VR in this navigation situation. For the effective integration of locomotion besides, it must be under natural guidance. EEG, which uses random brain impulses, has made significant progress in the field of health. The custom of an automated audio announcement system modified to have the help of VR and EEG for the training of locomotion and individualized interaction of wheelchair users with visual disability is demonstrated in this study through an experiment. Enabling the patients who were otherwise deemed incapacitated to participate in social activities, as the aim was to have efficient connections.

Findings

To protect their life straightaway and to report all these disputes, the military system should have high speed, more precise portable prototype device for nursing the soldier health, recognition of solider location and report about health sharing system to the concerned system. Field programmable gate array (FPGA)-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals, the soldier’s health is observed on systematic bases. By emerging Verilog hardware description language (HDL) programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t the whole work is approved in a Vivado Design Suite. Classification of different abnormalities and cloud storage of EEG along with the type of abnormalities, artifact elimination, abnormalities identification based on feature extraction, exist in the segment of suggested architecture. Irregularity circumstances are noticed through developed prototype system and alert the physically challenged (PHC) individual via an audio announcement. An actual method for eradicating motion artifacts from EEG signals that have anomalies in the PHC person’s brain has been established, and the established system is a portable device that can deliver differences in brain signal variation intensity. Primarily the EEG signals can be taken and the undesirable artifact can be detached, later structures can be mined by discrete wavelet transform these are the two stages through which artifact deletion can be completed. The anomalies in signal can be noticed and recognized by using machine learning algorithms known as multirate support vector machine classifiers when the features have been extracted using a combination of hidden Markov model (HMM) and Gaussian mixture model (GMM). Intended for capable declaration about action taken by a blind person, these result signals are protected in storage devices and conveyed to the controller. Pretending daily motion schedules allows the pretentious EEG signals to be caught. Aimed at the validation of planned system, the database can be used and continued with numerous recorded signals of EEG. The projected strategy executes better in terms of re-storing theta, delta, alpha and beta complexes of the original EEG with less alteration and a higher signal to noise ratio (SNR) value of the EEG signal, which illustrates in the quantitative analysis. The projected method used Verilog HDL and MATLAB software for both formation and authorization of results to yield improved results. Since from the achieved results, it is initiated that 32% enhancement in SNR, 14% in mean squared error (MSE) and 65% enhancement in recognition of anomalies, hence design is effectively certified and proved for standard EEG signals data sets on FPGA.

Originality/value

The proposed system can be used in military applications as it is high speed and excellent precise in terms of identification of abnormality, the developed system is portable and very precise. FPGA-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals the soldier health is observed in systematic bases. The proposed system is developed using Verilog HDL programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t and synthesised using in Vivado Design Suite software tool.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 447